Polar organic chemical integrative samplers (POCIS) have previously been used to monitor alkylphenol (AP) contamination in water and produced water. However, only the sorbent receiving phase of the POCIS (Oasis beads) is traditionally analyzed, thus limiting the use of POCIS for monitoring a range of APs with varying hydrophobicity. Here a "pharmaceutical" POCIS was calibrated in the laboratory using a static renewal setup for APs (from 2-ethylphenol to 4-n-nonylphenol) with varying hydrophobicity (log K between 2.47 and 5.76). The POCIS sampler was calibrated over its 28 day integrative regime and sampling rates (R) were determined. Uptake was shown to be a function of AP hydrophobicity where compounds with log K < 4 were preferentially accumulated in Oasis beads, and compounds with log K > 5 were preferentially accumulated in the PES membranes. A lag phase (over a 24 h period) before uptake in to the PES membranes occurred was evident. This work demonstrates that the analysis of both POCIS phases is vital in order to correctly determine environmentally relevant concentrations owing to the fact that for APs with log K ≤ 4 uptake, to the PES membranes and the Oasis beads, involves different processes compared to APs with log K ≥ 4. The extraction of both the POCIS matrices is thus recommended in order to assess the concentration of hydrophobic APs (log K ≥ 4), as well as hydrophilic APs, most effectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2017.06.083 | DOI Listing |
Polymers (Basel)
January 2025
Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar.
The development of ultrafiltration (UF) polymeric membranes with high flux and enhanced antifouling properties bridges a critical gap in the polymeric membrane fabrication research field. In the present work, the preparation of novel PES membranes incorporated with carrageenan (CAR), which is a natural polymer derived from edible red seaweed, is reported for the first time. The PES/CAR membranes were prepared by using the nonsolvent-induced phase separation (NIPS) method at 0.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Advanced Organ Bioengineering and Therapeutics, Faculty of Science and Technology, University of Twente, Zuidhorst 28, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
Hemodialysis (HD) is a critical treatment for patients with end-stage kidney disease (ESKD). The effectiveness of conventional dialyzers used there could be compromised during extended use due to limited blood compatibility of synthetic polymeric membranes and sub-optimal dialyzer design. In fact, blood flow in the hollow fiber (HF) membrane could trigger inflammatory responses and thrombus formation, leading to reduced filtration efficiency and limiting therapy duration, a consequence of flowing the patients' blood through the lumen of each fiber while the dialysate passes along the inter-fiber space (IOF, inside-out filtration).
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Group of Analysis & Processes, Faculty of Sciences, University of Angers, 2 Bd. A. de Lavoisier, 49045 Angers, Cedex 01, France.
The objective of this study is to evaluate the degradation of end-of-life BWRO membranes sourced from a factory in France by analyzing their water permeability, roughness, and chemical composition in order to diagnose the level of degradation incurred during their first life cycle in water softening. Following this, two new applications for the end-of-life BWRO membranes were investigated: (i) as ultrafiltration membranes (UF) for domestic effluent treatment and (ii) as cation exchange membranes (CEM) for use in fungal microbial fuel cells (FMFC). The UF membrane was renovated with an acetic acid treatment and, subsequently, used for domestic effluent filtration.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
Hemodialysis and bioartificial kidney (BAK), which mimic both physical and biological functions, can significantly impact chronic kidney disease (CKD) patients. Here we report on Hollow fiber membranes (HFMs) with enhanced separation of uremic toxins along with enhanced hemocompatibility and biocompatibility that also promote the growth of kidney cells. The improvement arises from the addition of titanium dioxide (0.
View Article and Find Full Text PDFRSC Adv
January 2025
Packing and Packaging Materials Department, Institute of Chemical Industries Research, National Research Centre 33 El Behooth St., Dokki Giza Egypt +20 2 33371718.
Nanofiltration (NF) separation technology is a low-pressure filtration process, which is highly efficient and environmentally friendly. As a result, it has found wide application in water treatment. This work describes the preparation of flat sheet membranes the phase inversion method using blends of hyperbranched polyester amide (PEA) and polyether sulphone (PES) in definite ratios.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!