Intracellular transport is affected by the filament network in the densely packed cytoplasm. Biophysical studies focusing on intracellular transport based on microtubule-kinesin system frequently use in vitro motility assays, which are performed either on individual microtubules or on random (or simple) microtubule networks. Assembling intricate networks with high flexibility requires the manipulation of 25 nm diameter microtubules individually, which can be achieved through the use of pick-and-place assembly. Although widely used to assemble tiny objects, pick-and-place is not a common practice for the manipulation of biological materials. Using the high-level handling capabilities of microelectromechanical systems (MEMS) technology, tweezers are designed and fabricated to pick and place single microtubule filaments. Repeated picking and placing cycles provide a multilayered and multidirectional microtubule network even for different surface topographies. On-demand assembly of microtubules forms crossings at desired angles for biophysical studies as well as complex networks that can be used as nanotransport systems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201701136DOI Listing

Publication Analysis

Top Keywords

pick-and-place assembly
8
intracellular transport
8
biophysical studies
8
assembly single
4
microtubules
4
single microtubules
4
microtubules intracellular
4
transport filament
4
filament network
4
network densely
4

Similar Publications

A microgripper based on electrothermal Al-SiO bimorphs.

Microsyst Nanoeng

December 2024

School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China.

Microgrippers are essential for assembly and manipulation at the micro- and nano-scales, facilitating important applications in microelectronics, MEMS, and biomedical engineering. To guarantee the safe handling of delicate materials and micro-objects, a microgripper needs to be designed to operate with exceptional precision, rapid response, user-friendly operation, strong reliability, and low power consumption. In this study, we develop an electrothermal actuated microgripper with Al-SiO bimorphs as the primary structural element.

View Article and Find Full Text PDF

AAT4IRS: automated acceptance testing for industrial robotic systems.

Front Robot AI

October 2024

Department of Computer Science and Software Engineering, Concordia University, Montréal, QC, Canada.

Industrial robotic systems (IRS) consist of industrial robots that automate industrial processes. They accurately perform repetitive tasks, replacing or assisting with dangerous jobs like assembly in the automotive and chemical industries. Failures in these systems can be catastrophic, so it is important to ensure their quality and safety before using them.

View Article and Find Full Text PDF

Soft robots typically involve manual assembly of core hardware components like actuators, sensors, and controllers. This increases fabrication time and reduces consistency, especially in small-scale soft robots. We present a scalable monolithic fabrication method for millimeter-scale soft-rigid hybrid robots, simplifying the integration of core hardware components.

View Article and Find Full Text PDF

Adhesion is the key functionality to pick-and-place objects in wet environments. Recently, various micropillars and external stimuli have been proposed to achieve reversible wet adhesion. However, their underlying mechanisms of liquid/solid regulations have not been sufficiently revealed.

View Article and Find Full Text PDF

We demonstrate a hybrid integrated laser by transfer printing an InAs/GaAs quantum dot (QD) amplifier on a Si waveguide with distributed Bragg reflectors (DBRs). The QD waveguide amplifier of 1.6 mm long was patterned in the form of an airbridge with the help of a spin-on-glass sacrificial layer and precisely integrated on the silicon-on-insulator (SOI) waveguide by pick-and-place assembly using an elastomer stamp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!