AI Article Synopsis

  • Grenz rays, a type of minimally penetrating X-rays, show promise in improving the acceptance of islet allografts in a mouse model, particularly by reducing their immunogenicity.
  • In tests, treated islet allografts demonstrated extended survival rates, with some showing long-term acceptance and better outcomes when combined with immunosuppressive therapy (CTLA-4 Ig).
  • The treatment appears to decrease harmful donor T cell populations in the recipients, suggesting that low-dose grenz ray exposure helps maintain islet integrity and promotes graft survival by altering immune responses.

Article Abstract

Grenz rays, or minimally penetrating X-rays, are known to be an effective treatment of certain recalcitrant immune-mediated skin diseases, but their use in modulating allograft rejection has not been tested. We examined the capacity of grenz ray treatment to minimize islet immunogenicity and extend allograft survival in a mouse model. In a preliminary experiment, 1 of 3 immunologically intact animals demonstrated long-term acceptance of their grenz ray treated islet allograft. Further experiments revealed that 28.6% (2 of 7) grenz ray treated islet allografts survived >60 d. A low dose of 20Gy, was important; a 4-fold increase in radiation resulted in rapid graft failure, and transplanting a higher islet mass did not alter this outcome. To determine whether increased islet allograft survival after grenz treatment would be masked by immunosuppression, we treated the recipients with CTLA-4 Ig, and found an additive effect, whereby 17.5% more animals accepted the graft long-term versus those with CTLA-4 Ig alone. Cell viability assays verified that islet integrity was maintained after treatment with 20Gy. As well, through splenocyte infiltration analysis, donor CD4+ T cell populations 24-hours after transplant were decreased by more than16-fold in recipients receiving irradiated islets compared with control. Donor CD8+ T cell populations, although less prevalent, decreased in all treatment groups compared with control. Our results suggest that brief treatment of isolated islets with low energy grenz rays before allotransplantation can significantly reduce passenger leukocytes and promote graft survival, possibly by inducing donor dendritic cells to differentiate toward a tolerogenic phenotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5510618PMC
http://dx.doi.org/10.1080/19382014.2017.1330742DOI Listing

Publication Analysis

Top Keywords

grenz ray
16
low energy
8
ray treatment
8
grenz rays
8
allograft survival
8
ray treated
8
treated islet
8
islet allograft
8
cell populations
8
compared control
8

Similar Publications

Background: Non-invasiveness and comfort are crucial in the conservative management of distal radius and scaphoid fractures. While fiberglass casts are standard, three-dimensional (3D)-printed orthoses offer a promising alternative.

Purpose: To compare patient experiences, safety perceptions, and satisfaction between a 3D orthosis and fiberglass cast for distal radius or scaphoid fractures.

View Article and Find Full Text PDF

Background: Case reports suggest that calcitonin gene-related peptide monoclonal antibodies (CGRP mAbs) may trigger inflammatory flares in patients with autoimmune diseases.

Case Description: A 56-year-old woman with a history of severe migraines, experienced improvement in migraine frequency and intensity after starting fremanezumab 225 mg monthly. However, three months into treatment, she developed symmetric inflammatory polyarthralgias.

View Article and Find Full Text PDF

Efficacy of small-diameter core decompression with platelet-rich plasma in early osteonecrosis of the femoral head: a retrospective study.

BMC Musculoskelet Disord

January 2025

Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China.

Background: Osteonecrosis of the femoral head (ONFH) is a challenging condition, primarily affecting young and middle-aged individuals, which results in hip dysfunction and, ultimately, femoral head collapse. However, the comparative effectiveness of joint-preserving procedures, particularly in the early stages of ONFH (ARCO stage I or II), remains inconclusive. This study aims to evaluate the efficacy of a novel technique called small-diameter core decompression (CD) combined with platelet-rich plasma (PRP), for the treatment of early-stage ONFH.

View Article and Find Full Text PDF

X-ray footprinting mass spectrometry (XFMS) is a structural biology method that uses broadband X-rays for hydroxyl radical labeling to map protein interactions and conformation in solution. However, while XFMS alone provides important structural information on biomolecules, as we move into the era of the interactome, hybrid methods are becoming increasingly necessary to gain a comprehensive understanding of protein complexes and interactions. Toward this end, we report the development of the first synergetic application of inline and real-time fluorescent spectroscopy at the Advanced Light Source's XFMS facility to study local protein interactions and global conformational changes simultaneously.

View Article and Find Full Text PDF

Background Numerous classifications exist for intertrochanteric (IT) fractures, commonly focused on stability. However, the currently utilized Arbeitsgemeinschaft Osteosynthesefragen and Orthopaedic Trauma Association (AO/OTA) classification has limitations in identifying irreducible fractures. This study aims to answer the following questions: does fracture stability imply irreducibility; which fracture fragments complicate reduction; and which reduction techniques should be employed? Materials and methods Eligibility criteria included fractures in adult long bones without pathological fractures being treated by native conservative means.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!