Enantioselective Synthesis and in Vivo Evaluation of Regioisomeric Analogues of the Antimalarial Arterolane.

J Med Chem

Department of Pharmaceutical Chemistry and ‡Department of Medicine, University of California San Francisco, 1700 Fourth Street, San Francisco, California 94158, United States.

Published: July 2017

We describe the first systematic study of antimalarial 1,2,4-trioxolanes bearing a substitution pattern regioisomeric to that of arterolane. Conformational analysis suggested that trans-3″-substituted trioxolanes would exhibit Fe(II) reactivity and antiparasitic activity similar to that achieved with canonical cis-4″ substitution. The chiral 3″ analogues were prepared as single stereoisomers and evaluated alongside their 4″ congeners against cultured malaria parasites and in a murine malaria model. As predicted, the trans-3″ analogues exhibited in vitro antiplasmodial activity remarkably similar to that of their cis-4″ comparators. In contrast, efficacy in the Plasmodium berghei mouse model differed dramatically for some of the congeneric pairs. The best of the novel 3″ analogues (e.g., 12i) outperformed arterolane itself, producing cures in mice after a single oral exposure. Overall, this study suggests new avenues for modulating Fe(II) reactivity and the pharmacokinetic and pharmacodynamic properties of 1,2,4-trioxolane antimalarials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5535261PMC
http://dx.doi.org/10.1021/acs.jmedchem.7b00699DOI Listing

Publication Analysis

Top Keywords

feii reactivity
8
3″ analogues
8
enantioselective synthesis
4
synthesis vivo
4
vivo evaluation
4
evaluation regioisomeric
4
analogues
4
regioisomeric analogues
4
analogues antimalarial
4
antimalarial arterolane
4

Similar Publications

Recently, the activation of chlorine dioxide (ClO) by metal(oxide) for soil remediation has gained notable attention. However, the related activation mechanisms are still not clear. Herein, the variation of iron species and ClO, the generated reactive oxygen species, and the toxicity of the degradation intermediates were explored and evaluated with nanoscale zero-valent iron (nFe) being employed to activate ClO for soil polycyclic aromatic hydrocarbon (PAH) removal.

View Article and Find Full Text PDF

This work develops Fe-Ni particles loaded on biochar (Fe-Ni/BC) to remove U(VI) efficiently. Fe-Ni bimetallic particles loaded on biochar (BC) can improve stability and reactivity, and the mesoporous structure of BC can effectively reduce Fe aggregation. The removal ability of Fe-Ni/BC is higher than that of Fe-Ni, BC, and Fe/BC.

View Article and Find Full Text PDF

New insights into the Fe(III)-activated peroxyacetic acid: oxidation properties and mechanism.

Environ Res

January 2025

Ministry of Ecology and Environment South China Institute of Environmental Sciences, Guangzhou 510655, China; Key Laboratory of Water Environmental Simulation and Pollution Control, Ministry of Ecology and Environment, Guangzhou 510655, China. Electronic address:

Iron-activated peroxyacetic acid (PAA) represents an innovative advanced oxidation process (AOP). However, the efficiency of PAA activation by Fe(III) is often underestimated due to the widespread assumption that Fe(III) exhibits much lower ability than Fe(II) to activate PAA. Herein, the oxidative degradation of Rhodamine B (RhB) by Fe(III)-activated PAA process was investigated, and some new insights into the performance and mechanism of the Fe(III)/PAA system were presented.

View Article and Find Full Text PDF

Nanoscale Fe(0)-zeolite composite derived from coal bottom ash for efficient treatment of Cr(VI)-contaminated groundwater: Unveiling the importance of locations for surface-bound Fe(II) and Fe(0) passivation products.

J Hazard Mater

January 2025

Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Environmental Engineering, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea. Electronic address:

The synthesis of coal bottom ash-induced zeolite (Si-Al material) has been widely reported; however, the selective recovery of the three main elements, viz., Si, Al, and Fe, from coal bottom ash for the synthesis of reactive adsorbents has not yet been reported. In this study, we separated the magnetic and non-magnetic fractions of coal bottom ash to selectively recover Fe and Si-Al for synthesizing nanoscale zero-valent iron@zeolite (NZVI@ZBA) composites with uniform formation of Fe(0) nanoparticles on the ZBA surface.

View Article and Find Full Text PDF

Fenton-like reactions between organic peroxides and transition-metal ions in the atmospheric aqueous phase have profound impacts on the chemistry, composition, and health effects of aerosols. However, the kinetics, mechanisms, and key influencing factors of such reactions remain poorly understood. In this study, we synthesized a series of monoterpene-derived α-acyloxyalkyl hydroperoxides (AAHPs), an important class of organic peroxides formed from Criegee intermediates during the ozonolysis of alkenes, and investigated their Fenton-like reactions with iron ions in the aqueous phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!