Human renal cell carcinoma which is a highly vascular tumor is the leading cause of death from urologic cancers. Angiogenesis has a pivotal role in oncogenesis and in the viability and expansion of renal cell carcinoma. Rap2B, as a small guanosine triphosphate-binding protein of the Ras family, was first discovered in the early 1990s during the screening of a platelet complementary DNA library. Previous studies have shown that Rap2B aberrantly expressed in human carcinogenesis and promoted the development of tumors via multiple signaling pathways. However, the function of Rap2B in tumor angiogenesis that is necessary for tumor growth and metastasis remains unknown. In this study, we examined the role of Rap2B in angiogenesis in renal cell carcinoma by Western blot, quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, human umbilical vascular endothelial cells growth assay, and endothelial cell tube formation assay. We found that Rap2B promoted angiogenesis in vitro and in vivo. Moreover, our data illustrated that phosphoinositide 3-kinase/AKT signaling pathway is involved in Rap2B-mediated upregulation of vascular endothelial growth factor and renal cell carcinoma angiogenesis. Taken together, these results revealed that Rap2B promotes renal cell carcinoma angiogenesis via phosphoinositide 3-kinase/AKT/vascular endothelial growth factor signaling pathway, which suggests that Rap2B is a novel therapeutic target for renal cell carcinoma anti-angiogenesis therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1010428317701653DOI Listing

Publication Analysis

Top Keywords

renal cell
28
cell carcinoma
28
signaling pathway
12
rap2b
8
rap2b promotes
8
human renal
8
cell
8
vascular endothelial
8
endothelial growth
8
growth factor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!