Stem cell-based therapies are attraction approaches for regenerative medicine for treating retinal diseases. One of the limitations in cell therapy is cell death following post-injection whit preventing functional integration with retinal tissue. Fibrin gel, a bio-polymeric material with excellent biocompatibility, provides numerous advantages as a tissue engineering scaffold and a stem cell carrier. Therefore, current research is focusing on developing fibrin hydrogel scaffolds to protect stem cells during delivery and to stimulate endogenous regeneration through interactions of transplanted stem cells and retinal tissue. In this study fibrin gel was used as hydrogel scaffold for immobilization of cells. The structural characteristics of fibrin gel scaffold were examined with SEM. Rheological properties of fibrin gel were measured by rheometer and biodegradation rate of fibrin were assayed for 2 weeks. After isolation of stem cells CJMSCs, the cells were differentiated into photoreceptor-like cells by exposing with taurin for 14 days in tissue culture plate (TCP group) and fibrin hydrogel (3 D group). The attachment of cells was analyzed with SEM and MTT. The expression of rhodopsin, PKC, CRX, recoverin, peripherin, nestin and RPE65 as photoreceptor-like cell markers was evaluated by immunocytochemistry and quantitative real-time PCR (RT-PCR) in TCP and 3 D groups. The results of SEM analysis showed CJMSCs were well attached in fibrin gels and there were good integrity between cells and scaffold. The elastic modulus and constant degradation of the gel contributes to the growth and proliferation of cells. There was no toxicity effect of fibrin hydrogel on cells and the viability of cultured cells was higher in 3 D fibrin gels in comparison with TCP groups. After 2 weeks, the expression of rhodopsin, PKC, CRX, peripherin, recoverin, nestin and RPE65 as special markers of photoreceptor cells were detected by Real time PCR and immunofluorescence that these expressions in 3 D groups were higher than TCP groups. In conclusion, our findings showed that application of readily available sources of adult stem cells like human conjunctiva stem cells encapsulated in fibrin gel could be interesting strategy to enhance photoreceptor progenitor cell numbers for repair and regeneration of retina disease such as photoreceptor injury.

Download full-text PDF

Source
http://dx.doi.org/10.1080/21691401.2017.1345922DOI Listing

Publication Analysis

Top Keywords

fibrin gel
24
stem cells
24
cells
16
fibrin
12
fibrin hydrogel
12
gel scaffold
8
photoreceptor cells
8
stem
8
tissue engineering
8
retinal tissue
8

Similar Publications

Direct thrombin inhibitors (designated as EuRL-DTIs) were partially purified from ethanol extracts of Euphorbia resinifera O.Berg latex. The obtained EuRL-DTIs comprised four major compounds: two isomers of phenolic compounds (CHO) and two amide compounds (tentatively identified as CHNO and CHNO), as identified by liquid chromatography and electrospray ionisation quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS), attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, and/or nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

This study evaluated the impact of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) on burn wound with dual-species biofilm. Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S.

View Article and Find Full Text PDF

This study presents a numerical model for incipient fibrin-clot formation that captures characteristic rheological and microstructural features of the clot at the gel point. Using a mesoscale-clustering framework, we evaluate the effect of gel concentration or gel volume fraction and branching on the fractal dimension, the gel time, and the viscoelastic properties of the clots. We show that variations in the gel concentration of our model can reproduce the effect of thrombin in the formation of fibrin clots.

View Article and Find Full Text PDF

Fish scale gelatin/diatom biosilica composite hemostasis sponge with ultrafast dispersing and in situ gelation for hemorrhage control.

Int J Biol Macromol

January 2025

College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, Hainan Province, China. Electronic address:

Rapid control of hemorrhage is vital in first-aid and surgery. As representative of emergency hemostatic materials, inorganic porous materials achieve rapid hemostasis through concentrating protein coagulation factors by water adsorption to accelerate the coagulation reaction process, however their efficacy is often limited by the insufficient contact of material with blood and the lack of blood clot strength. Herein, we report an ultrafast dispersing and in situ gelation sponge (SG/DB) based on anchoring interface effect for hemorrhage control using freeze drying method after mixing fish scale gel (SG) and tert-butyl alcohol (TBA) pre-crystallized diatom biosilica (DB).

View Article and Find Full Text PDF

Epigenetic therapy has gained interest in treating cardiovascular diseases, but preclinical studies often encounter challenges with cell-type-specific effects or batch-to-batch variation, which have limited identification of novel drug candidates targeting angiogenesis. To address these limitations and improve the reproducibility of epigenetic drug screening, we redesigned a 3D in vitro fibrin bead assay to utilize immortalized human aortic endothelial cells (TeloHAECs) and screened a focused compound library with 105 agents. Compared to the established model using primary human umbilical vein endothelial cells, TeloHAECs needed a higher-density fibrin gel for optimal sprouting, successfully forming sprouts under both normoxic and hypoxic cell culture conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!