Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The importance of nitric oxide (NO) in many biological processes has garnered increasing research interest in the design and development of efficient technologies for the sensitive detection of NO. Here we report on a novel gold microelectrode with a unique three-dimensional (3D) hierarchical nanoporous structure for the electrochemical sensing of NO, which was fabricated via a facile electrochemical alloying/dealloying method. Following the treatment, the electrochemically active surface area (ECSA) of the gold microelectrode was significantly increased by 22.9 times. The hierarchical nanoporous gold (HNG) microelectrode exhibited excellent performance for the detection of NO with high stability. On the basis of differential pulse voltammetry (DPV) and amperometric techniques, the obtained sensitivities were 21.8 and 14.4 μA μM cm, with detection limits of 18.1 ± 1.22 and 1.38 ± 0.139 nM, respectively. The optimized HNG microelectrode was further utilized to monitor the release of NO from different cells, realizing a significant differential amount of NO generated from the normal and stressed rat cardiac cells as well as from the untreated and treated breast cancer cells. The HNG microelectrode developed in the present study may provide an effective platform in monitoring NO in biological processes and would have a great potential in the medical diagnostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.7b01430 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!