A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sensitive Electrochemical Detection of Nitric Oxide Release from Cardiac and Cancer Cells via a Hierarchical Nanoporous Gold Microelectrode. | LitMetric

Sensitive Electrochemical Detection of Nitric Oxide Release from Cardiac and Cancer Cells via a Hierarchical Nanoporous Gold Microelectrode.

Anal Chem

Department of Chemistry, ‡Department of Biology, and §Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.

Published: August 2017

The importance of nitric oxide (NO) in many biological processes has garnered increasing research interest in the design and development of efficient technologies for the sensitive detection of NO. Here we report on a novel gold microelectrode with a unique three-dimensional (3D) hierarchical nanoporous structure for the electrochemical sensing of NO, which was fabricated via a facile electrochemical alloying/dealloying method. Following the treatment, the electrochemically active surface area (ECSA) of the gold microelectrode was significantly increased by 22.9 times. The hierarchical nanoporous gold (HNG) microelectrode exhibited excellent performance for the detection of NO with high stability. On the basis of differential pulse voltammetry (DPV) and amperometric techniques, the obtained sensitivities were 21.8 and 14.4 μA μM cm, with detection limits of 18.1 ± 1.22 and 1.38 ± 0.139 nM, respectively. The optimized HNG microelectrode was further utilized to monitor the release of NO from different cells, realizing a significant differential amount of NO generated from the normal and stressed rat cardiac cells as well as from the untreated and treated breast cancer cells. The HNG microelectrode developed in the present study may provide an effective platform in monitoring NO in biological processes and would have a great potential in the medical diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.7b01430DOI Listing

Publication Analysis

Top Keywords

hierarchical nanoporous
12
gold microelectrode
12
hng microelectrode
12
nitric oxide
8
cancer cells
8
nanoporous gold
8
biological processes
8
microelectrode
6
sensitive electrochemical
4
detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!