Bone is a complexly structured tissue and hierarchically organized from macro to nano levels of dimensions. Biomaterial devices developed to replace and interact with bone tissues have been designed from the macro to nano perspective to provide suitable performance in acquiring primary and biological stability. Macro level designed features provide mechanical interlock and primary stability to implants inside the bone. Surface micro and nano structures influence cells behavior to promote the secondary or biological stability, reaching successful osseointegration.
Download full-text PDF |
Source |
---|
ACS Nano
January 2025
Consiglio Nazionale delle Ricerche (CNR) - Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129 Bologna, Italy.
This study reveals the capability of nanostructured organic materials to undergo pseudomorphic transformations, a ubiquitous phenomenon occurring in the mineral kingdom that involves the replacement of a mineral phase with a new one while retaining the original shape and volume. Specifically, it is demonstrated that the postoxidation process induced by HOF·CHCN on preformed thiophene-based 1D nanostructures preserves their macro/microscopic morphology while remarkably altering their electro-optical properties by forming a new oxygenated phase. Experimental evidence proves that this transformation proceeds via an interface-coupled dissolution-precipitation mechanism, leading to the growth of a porous oxidized shell that varies in thickness with exposure time, enveloping the pristine smooth core.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea.
For cultured meat to effectively replace traditional meat, it is essential to develop scaffolds that replicate key attributes of real meat, such as taste, nutrition, flavor, and texture. However, one of the significant challenges in replicating meat characteristics with scaffolds lies in the considerable gap between the stiffness preferred by cells and the textural properties desired by humans. To address this issue, we focused on the microscale environment conducive to cell growth and the macro-scale properties favored by humans.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute of Applied Mechanics, College of Aeronautics and Astronautics, Taiyuan University of Technology, Taiyuan 030024, China.
Based on the basic theoretical framework of the Bi-directional Evolutionary Structural Optimization method (BESO) and the Solid Isotropic Material with Penalization method (SIMP), this paper presents a multiscale topology optimization method for concurrently optimizing the sandwich structure at the macro level and the core layer at the micro level. The types of optimizations are divided into macro and micro concurrent topology optimization (MM), macro and micro gradient concurrent topology optimization (MMG), and macro and micro layered gradient concurrent topology optimization (MMLG). In order to compare the multiscale optimization method with the traditional macroscopic optimization method, the sandwich simply supported beam is illustrated as a numerical example to demonstrate the functionalities and superiorities of the proposed method.
View Article and Find Full Text PDFNat Commun
January 2025
Electronic Materials Research Laboratory & Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Multilayer ceramic capacitor as a vital core-component for various applications is always in the spotlight. Next-generation electrical and electronic systems elaborate further requirements of multilayer ceramic capacitors in terms of higher energy storage capabilities, better stabilities, environmental-friendly lead-free, etc., where these major obstacles may restrict each other.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Zhejiang Key Laboratory of Clean Energy Conversion and Utilization, Science and Education Integration College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!