A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comprehensive Examination of Mechanical and Diffusional Effects on Cell Behavior Using a Decoupled 3D Hydrogel System. | LitMetric

Hydrogels possess several physical and chemical properties suitable for engineering cellular environments for biomedical applications. Despite recent advances in hydrogel systems for cell culture, it is still a significant challenge to independently control the mechanical and diffusional properties of hydrogels, both of which are well known to influence various cell behaviors when using hydrogels as 3D cell culture systems. Controlling the crosslinking density of a hydrogel system to tune the mechanical properties inevitably affects their diffusional properties, as the crosslinking density and diffusion are often inversely correlated. In this study, a polymeric crosslinker is demonstrated that allows for the adjustment of the degree of substitution of reactive functional groups. By using this polymeric crosslinker, the rigidity of the resulting hydrogel is controlled in a wide range without changing the polymer concentration. Furthermore, their diffusional properties, as characterized by their swelling ratios, pore diameters, and drug release rates, are not significantly affected by the changes in the degree of substitution. 3D cell studies using this hydrogel system successfully demonstrate the varying effects of mechanical properties on different cell types, whereas those in a conventional hydrogel system are more significantly influenced by changes in diffusional properties.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.201700162DOI Listing

Publication Analysis

Top Keywords

hydrogel system
16
diffusional properties
16
mechanical diffusional
8
cell culture
8
crosslinking density
8
mechanical properties
8
polymeric crosslinker
8
degree substitution
8
properties
7
cell
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!