Studying plant-pollinator interactions facing climate change and changing environments.

Appl Plant Sci

Department of Plant Biology, University of Georgia, Athens, Georgia 30602 USA.

Published: June 2017

Plant-pollinator interactions are essential for successful plant reproduction in both natural and agricultural systems. These interactions are negatively impacted by recent large-scale alterations of the environments, particularly climate change. The responses of plants and pollinators to changing abiotic conditions that vary seasonally and geographically are often uncoordinated, potentially leading to the breakdown of this interaction. The complexity of the responses of plants and pollinators to our changing climate necessitates creative approaches. The six articles in this special issue directly address this need by providing a variety of key methods and reviews of current methodology. The articles include: DNA barcoding methods for use on pollen collected from visiting bees; methods for assessment of plant attraction traits (nectar and review of floral volatiles methods); a field sampling method for ground nesting bees; a review of using spatial and temporal transplants for addressing changing dynamics of plant-pollinator interactions; and a review of approaches used to assess potential shifts in phenology of plants and pollinators. Collectively, these articles illustrate some of the breadth of approaches needed to address the changing dynamics of plant-pollinator interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5499307PMC
http://dx.doi.org/10.3732/apps.1700052DOI Listing

Publication Analysis

Top Keywords

plant-pollinator interactions
16
plants pollinators
12
climate change
8
responses plants
8
pollinators changing
8
changing dynamics
8
dynamics plant-pollinator
8
interactions
5
changing
5
studying plant-pollinator
4

Similar Publications

Despite the widely recognized role of pollinators in ecosystem services, we currently have a poor understanding of the contribution of Natural Protected Areas neighboring agricultural landscapes to crop pollinator diversity and plant-pollinator interactions. Here, we conducted monthly surveys over a period of one year to study the diversity of insect visitors in dominant fruit crops-avocado, plum, apple, and blackberry-and used pollen DNA metabarcoding to characterize the community of plant sources in and around low-intensive farmland bordered by protected montane forest in Costa Rica. We found that crops and native plants had distinct communities of flower visitors, suggesting the presence of fine-scale habitat differences.

View Article and Find Full Text PDF

The geographic mosaic of coevolution predicts reciprocal selection, the first step in coevolution, to vary with changing biotic and abiotic environmental conditions. Studying how temperature affects reciprocal selection is essential to connect effects of global warming on the microevolutionary patterns of coevolution to the ecological processes underlying them. In this study, we investigated whether temperature influenced reciprocal selection between a plant (Brassica rapa) and its pollinating butterfly herbivore (Pieris rapae).

View Article and Find Full Text PDF

As a result of climate change, temperate regions are facing the simultaneous increase in water and heat stress. These changes may affect the interactions between plants and pollinators, which will have an impact on entomophilous crop yields. Here, we investigated the consequences of high temperatures and water stress on plant growth, floral biology, flower-reward production, and insect visitation of five varieties of common buckwheat (), an entomophilous crop of growing interest for sustainable agriculture.

View Article and Find Full Text PDF

Ecological patterns of plant-pollinator interactions in the Palouse Prairie.

Environ Entomol

January 2025

Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA.

Insect pollinators are essential for natural ecosystems. Without pollination, native plants are less likely to be able to persist. As natural ecosystems have become more fragmented and degraded, interest in their restoration and preservation has increased.

View Article and Find Full Text PDF

Agricultural intensification has led to significant declines in beneficial insect populations, such as pollinators and natural enemies, along with their ecosystem services. The installation of perennial flower margins in farmland is a popular agri-environmental scheme to mitigate these losses, promoting biodiversity, pollination, and pest control. However, outcomes can vary widely, and recent insights into flower margins in an agricultural context suggest that management could be an important contributor to this variation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!