Plant-pollinator interactions are potentially at risk due to climate change. Because of the spatial and temporal variation associated with the effects of climate change and the responses of both actors, research to assess this interaction requires creative approaches. This review focuses on assessments of plants' and pollinators' altered phenology in response to environmental changes, as phenology is one of the key responses. I reviewed research methods with the goal of presenting the wide diversity of available techniques for addressing changes in these interactions. Approaches ranged from use of historical specimens to multisite experimental community studies; while differing in depth of historical information and community interactions, all contribute to assessment of phenology changes. Particularly insightful were those studies that directly assessed the environmental changes across spatial and temporal scales and the responses of plants and pollinators at these scales. Longer-term studies across environmental gradients, potentially with reciprocal transplants, enable an assessment of climate impacts at both scales. While changes in phenology are well studied, the impacts of phenology changes are not. Future research should include approaches to address this gap.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5499306 | PMC |
http://dx.doi.org/10.3732/apps.1700012 | DOI Listing |
Front Plant Sci
January 2025
Centro de Investigación en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José, Costa Rica.
Despite the widely recognized role of pollinators in ecosystem services, we currently have a poor understanding of the contribution of Natural Protected Areas neighboring agricultural landscapes to crop pollinator diversity and plant-pollinator interactions. Here, we conducted monthly surveys over a period of one year to study the diversity of insect visitors in dominant fruit crops-avocado, plum, apple, and blackberry-and used pollen DNA metabarcoding to characterize the community of plant sources in and around low-intensive farmland bordered by protected montane forest in Costa Rica. We found that crops and native plants had distinct communities of flower visitors, suggesting the presence of fine-scale habitat differences.
View Article and Find Full Text PDFEcol Lett
January 2025
Department of Systematic and Evolutionary Botany, University of Zürich, Zurich, Switzerland.
The geographic mosaic of coevolution predicts reciprocal selection, the first step in coevolution, to vary with changing biotic and abiotic environmental conditions. Studying how temperature affects reciprocal selection is essential to connect effects of global warming on the microevolutionary patterns of coevolution to the ecological processes underlying them. In this study, we investigated whether temperature influenced reciprocal selection between a plant (Brassica rapa) and its pollinating butterfly herbivore (Pieris rapae).
View Article and Find Full Text PDFPlants (Basel)
January 2025
Earth and Life Institute-Agronomy, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
As a result of climate change, temperate regions are facing the simultaneous increase in water and heat stress. These changes may affect the interactions between plants and pollinators, which will have an impact on entomophilous crop yields. Here, we investigated the consequences of high temperatures and water stress on plant growth, floral biology, flower-reward production, and insect visitation of five varieties of common buckwheat (), an entomophilous crop of growing interest for sustainable agriculture.
View Article and Find Full Text PDFEnviron Entomol
January 2025
Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA.
Insect pollinators are essential for natural ecosystems. Without pollination, native plants are less likely to be able to persist. As natural ecosystems have become more fragmented and degraded, interest in their restoration and preservation has increased.
View Article and Find Full Text PDFInsects
November 2024
Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium.
Agricultural intensification has led to significant declines in beneficial insect populations, such as pollinators and natural enemies, along with their ecosystem services. The installation of perennial flower margins in farmland is a popular agri-environmental scheme to mitigate these losses, promoting biodiversity, pollination, and pest control. However, outcomes can vary widely, and recent insights into flower margins in an agricultural context suggest that management could be an important contributor to this variation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!