Plasma Membrane is Compartmentalized by a Self-Similar Cortical Actin Meshwork.

Phys Rev X

Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, USA.

Published: March 2017

A broad range of membrane proteins display anomalous diffusion on the cell surface. Different methods provide evidence for obstructed subdiffusion and diffusion on a fractal space, but the underlying structure inducing anomalous diffusion has never been visualized because of experimental challenges. We addressed this problem by imaging the cortical actin at high resolution while simultaneously tracking individual membrane proteins in live mammalian cells. Our data confirm that actin introduces barriers leading to compartmentalization of the plasma membrane and that membrane proteins are transiently confined within actin fences. Furthermore, superresolution imaging shows that the cortical actin is organized into a self-similar meshwork. These results present a hierarchical nanoscale picture of the plasma membrane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500227PMC
http://dx.doi.org/10.1103/PhysRevX.7.011031DOI Listing

Publication Analysis

Top Keywords

plasma membrane
12
cortical actin
12
membrane proteins
12
anomalous diffusion
8
imaging cortical
8
actin
5
membrane
5
membrane compartmentalized
4
compartmentalized self-similar
4
self-similar cortical
4

Similar Publications

Background And Objective: Mitochondria are crucial to the function of renal tubular cells, and their dynamic perturbation in many aspects is an important mechanism of diabetic kidney disease (DKD). Single-nucleus RNA sequencing (snRNA-seq) technology is a high-throughput sequencing analysis technique for RNA at the level of a single cell nucleus. Here, our DKD mouse kidney single-cell RNA sequencing conveys a more comprehensive mitochondrial profile, which helps us further understand the therapeutic response of this unique organelle family to drugs.

View Article and Find Full Text PDF

Maturation of conventional dendritic cells (cDCs) is crucial for maintaining tolerogenic safeguards against auto-immunity and for promoting immunogenic responses to pathogens and cancer. The subcellular mechanism for cDC maturation remains poorly defined. We show that cDCs mature by leveraging an internal reservoir of cholesterol (harnessed from extracellular cell debris and generated by de novo synthesis) to assemble lipid nanodomains on cell surfaces of maturing cDCs, enhance expression of maturation markers and stabilize immune receptor signaling.

View Article and Find Full Text PDF

Synaptic Physiology Depends on Electrical Forces and Liquid-Liquid Phase Separation.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Pre- and post-synaptic events are regulated by liquid-liquid phase separation and this phenomenon requires multiple electrical forces. Both axonal transport and the organization of postsynaptic excitatory and inhibitory receptors are regulated by LLPS, with its mandatory electrical drivers ultimately determining our cognitive health and capacity.

View Article and Find Full Text PDF

Electrical Forces Regulate Single-Cell Wound Healing.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Damage to the cell membrane can be life threatening for single-celled organisms. Several mechanisms of single-cell wound healing occur and aspects of these are regulated by electrical forces.

View Article and Find Full Text PDF

Membrane Surface Charge, Phospholipids, and Protein Localization.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Cell membranes contain multiple charged lipids that bind proteins dynamically and their spatial organization on the inner/outer membrane leaflet, or in spatially localized areas has considerable biological importance. Myristoylated alanine-rich C kinase substrate (MARCKS) proteins and their roles as electrostatic switches are one example covered. Cell surface charge needs to be monitored and regulated continually and the roles of lipid flippases and scramblases and their electrical regulation also are considered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!