Cell packs a lot of genetic and regulatory information through a structure known as chromatin, i.e. DNA is wrapped around histone proteins and is tightly packed in a remarkable way. To express a gene in a specific coding region, the chromatin would open up and DNA loop may be formed by interacting enhancers and promoters. Furthermore, the mediator and cohesion complexes, sequence-specific transcription factors, and RNA polymerase II are recruited and work together to elaborately regulate the expression level. It is in pressing need to understand how the information, about when, where, and to what degree genes should be expressed, is embedded into chromatin structure and gene regulatory elements. Thanks to large consortia such as Encyclopedia of DNA Elements (ENCODE) and Roadmap Epigenomic projects, extensive data on chromatin accessibility and transcript abundance are available across many tissues and cell types. This rich data offer an exciting opportunity to model the causal regulatory relationship. Here, we will review the current experimental approaches, foundational data, computational problems, interpretive frameworks, and integrative models that will enable the accurate interpretation of regulatory landscape. Particularly, we will discuss the efforts to organize, analyze, model, and integrate the DNA accessibility data, transcriptional data, and functional genomic regions together. We believe that these efforts will eventually help us understand the information flow within the cell and will influence research directions across many fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501464 | PMC |
http://dx.doi.org/10.1093/nsr/nww025 | DOI Listing |
Mol Med
January 2025
Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, New York, 11030, USA.
Background: The process of B cell activation and plasma cell (PC) formation involves morphological, transcriptional, and metabolic changes in the B cell. Blocking or reducing PC differentiation is one approach to treat autoimmune diseases that are characterized by the presence of pathogenic autoantibodies. Recent studies have suggested the potential of myricetin, a natural flavonoid with anti-inflammatory and antioxidant properties, to block or reduce PC differentiation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gastroenterology, the Second Hospital of Dalian Medical University, Dalian, 116021, China.
The constantly emerging evidence indicates a close association between coronary artery disease (CAD) and non-alcoholic fatty liver disease (NAFLD). However, the exact mechanisms underlying their mutual relationship remain undefined. This study aims to explore the common signature genes, potential mechanisms, diagnostic markers, and therapeutic targets for CAD and NAFLD.
View Article and Find Full Text PDFCommun Biol
January 2025
Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China.
Carbon catabolite repression (CCR) and de-repression (CCDR) are critical for fungal development and pathogenicity, yet the underlying regulatory mechanisms remain poorly understood in pathogenic fungi. Here, we identify a serine/threonine protein phosphatase catalytic subunit, Pp4c, as essential for growth, conidiation, virulence, and the utilization of carbohydrates and lipids in Magnaporthe oryzae. We demonstrate that the protein phosphatase 4 complex (Pp4c and Smek1 subunits), the AMP-activated protein kinase (AMPK) Snf1, and the transcriptional regulators CreA (repressor) and Crf1 (activator) collaboratively regulate the utilization of non-preferred carbon sources.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
Programmed cell death (PCD) is a vital biological process that is essential for regulating cell progression and tumor microenvironment. This study aimed to explore the relationship between PCD-related genes expression and prognosis in thyroid cancer (THCA), especially IL20RA, as a potential prognostic marker for THCA. Data from The Cancer Genome Atlas (TCGA) database was utilized to develop a PCD-related risk prediction model based on LASSO regression along with univariate Cox regression.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
Various metabolic and cell signaling processes impact the functions of sugarcane plant cells. MicroRNAs (miRNAs) play critical regulatory roles in enhancing yield and providing protection against various stressors. This study seeks to identify and partially characterize several novel miRNAs in sugarcane using tools, while also offering a preliminary assessment of their functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!