The level of invasion (number or proportion of invasive species) in a given area depends on features of the invaded community, propagule pressure, and climate. In this study, we assess the invasive flora of nine islands in the West Indies to identify invasion patterns and evaluate whether invasive species diversity is related to geographical, ecological, and socioeconomic factors. We compiled a database of invasive plant species including information on their taxonomy, origin, pathways of introduction, habitats, and life history. This database was used to evaluate the similarity of invasive floras between islands and to identify invasion patterns at regional (West Indies) and local (island) scales. We found a total of 516 alien plant species that are invasive on at least one of the nine islands studied, with between 24 to 306 invasive species per island. The invasive flora on these islands includes a wide range of taxonomic groups, life forms, and habitats. We detected low similarity in invasive species diversity between islands, with most invasive species (>60%) occurring on a single island and 6% occurring on at least five islands. To assess the importance of different models in predicting patterns of invasive species diversity among islands, we used generalized linear models. Our analyses revealed that invasive species diversity was well predicted by a combination of island area and economic development (gross domestic product per capita and kilometers of paved roadways). Our results provide strong evidence for the roles of geographical, ecological, and socioeconomic factors in determining the distribution and spread of invasive species on these islands. Anthropogenic disturbance and economic development seem to be the major drivers facilitating the spread and predominance of invasive species over native species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5496547 | PMC |
http://dx.doi.org/10.1002/ece3.2984 | DOI Listing |
Ying Yong Sheng Tai Xue Bao
October 2024
Research Center for UAV Remote Sensing, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
Niche conservatism is essential for predicting the risk of alien species invasions. Currently, the changes of climate niche of during its invasion in China are still not clear. Using principal component analysis, we examined the climate niche shifts of during its invasion and analyzed its potential distribution in China.
View Article and Find Full Text PDFAnimal Model Exp Med
December 2024
Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
Background: Traditional DNA microinjection methods used in mammals are difficult to apply to avian species due to their unique reproductive characteristics. Genetic manipulation in chickens, particularly involving immature follicles within living ovaries, has not been extensively explored. This study seeks to establish an efficient method for generating transgenic chickens through ovarian injection, potentially bypassing the challenges associated with primordial germ cell (PGC) manipulation and fertilized egg microinjection.
View Article and Find Full Text PDFJ Biomed Phys Eng
December 2024
Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Background: Photothermal therapy (PTT) is one of the effective and non-invasive strategies which hold great promise for improving the treatment of cancer cells. PTT is based on activating a photosensitizer by infrared light irradiation and producing heat and reactive species and apoptosis in the tumor area.
Objective: The aim of this study was to investigate the effect of photothermal/chemotherapy on melanoma cancer cells using poly (2-amino phenol)/gold (P2AO/AuNPs) and doxorubicin (DOX).
PeerJ
December 2024
Oceanário de Lisboa, Lisbon, Portugal.
There is global awareness that many species of elasmobranchs (sharks and rays) have life history characteristics that make them susceptible to overexploitation. The study of these animals is critical, as it contributes to increasing knowledge of these specimens and aids in their conservation. In particular, growth rate, age, fecundity, and size at maturity are key parameters for defining management and conservation strategies in elasmobranchs.
View Article and Find Full Text PDFNumerous management methods are deployed to try to mitigate the destructive impact of weedy and invasive populations. Yet, such management practices may cause these populations to inadvertently evolve in ways that have consequence on their invasiveness. To test this idea, we conducted a two-step field mesocosm experiment; we evolved genetically diverse populations of the duckweed to targeted removal management and then tested the impact of that evolution in replicated invasions into experimental resident communities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!