Malaria is a predominant infectious disease, with a global footprint, but especially severe in developing countries in the African subcontinent. In recent years, drug-resistant malaria has become an alarming factor, and hence the requirement of new and improved drugs is more crucial than ever before. One of the promising locations for antimalarial drug target is the apicoplast, as this organelle does not occur in humans. The apicoplast is associated with many unique and essential pathways in many Apicomplexan pathogens, including Plasmodium. The use of machine learning methods is now commonly available through open source programs. In the present work, we describe a standard protocol to develop molecular descriptor based predictive models (QSAR models), which can be further utilized for the screening of large chemical libraries. This protocol is used to build models using training data sourced from apicoplast specific bioassays. Multiple model building methods are used including Generalized Linear Models (GLM), Random Forest (RF), C5.0 implementation of a decision tree, Support Vector Machines (SVM), K-Nearest Neighbour and Naive Bayes. Methods to evaluate the accuracy of the model building method are included in the protocol. For the given dataset, the C5.0, SVM and RF perform better than other methods, with comparable accuracy over the test data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498782 | PMC |
http://dx.doi.org/10.6026/97320630013154 | DOI Listing |
Int J Med Inform
January 2025
School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom. Electronic address:
Background: Coronavirus Disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, emerged as a global health crisis in 2019, resulting in widespread morbidity and mortality. A persistent challenge during the pandemic has been the accuracy of reported epidemic data, particularly in underdeveloped regions with limited access to COVID-19 test kits and healthcare infrastructure. In the post-COVID era, this issue remains crucial.
View Article and Find Full Text PDFInt J Med Inform
January 2025
Rheumatology and Allergy Clinical Epidemiology Research Center and Division of Rheumatology, Allergy, and Immunology, and Mongan Institute, Department of Medicine, Massachusetts General Hospital Boston MA USA. Electronic address:
Background: ANCA-associated vasculitis (AAV) is a rare but serious disease. Traditional case-identification methods using claims data can be time-intensive and may miss important subgroups. We hypothesized that a deep learning model analyzing electronic health records (EHR) can more accurately identify AAV cases.
View Article and Find Full Text PDFLipids Health Dis
January 2025
Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road Jinan, Shandong, 250012, People's Republic of China.
Background: An association exists between obesity and reduced testosterone levels in males. The propose of this research is to reveal the correlation between 15 indices linked to obesity and lipid levels with the concentration of serum testosterone, and incidence of testosterone deficiency (TD) among adult American men.
Methods: The study utilized information gathered from the National Health and Nutrition Examination Survey (NHANES) carried out from 2011 to 2016.
J Cardiothorac Surg
January 2025
Department of Cardiology, Fujian Medical University Union Hospital, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Clinical Medical Research Center for Heart and Macrovascular Disease, Fuzhou, 350001, China.
Objective: The objective of this study is to assess the predictive utility of perioperative P-wave parameters in patients with paroxysmal atrial fibrillation (PAF) undergoing catheter ablation, and to develop a predictive model using these parameters.
Methods: A total of 213 patients with PAF undergoing catheter ablation were retrospectively analyzed. P-wave parameters were measured within 3 days preoperatively and on the day postoperatively to determine their predictive significance for postoperative PAF recurrence.
Lipids Health Dis
January 2025
Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China.
Background: Stroke has emerged as an escalating public health challenge among middle-aged and older individuals in China, closely linked to glycolipid metabolic abnormalities. The Hemoglobin A1c/High-Density Lipoprotein Cholesterol (HbA1c/HDL-C) ratio, an integrated marker of glycolipid homeostasis, may serve as a novel predictor of stroke risk.
Methods: Our investigation utilized data from the China Health and Retirement Longitudinal Study cohort (2011-2018).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!