Evolution of polyketide synthesis in a Dothideomycete forest pathogen.

Fungal Genet Biol

Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand. Electronic address:

Published: September 2017

Fungal secondary metabolites have many important biological roles and some, like the toxic polyketide aflatoxin, have been intensively studied at the genetic level. Complete sets of polyketide synthase (PKS) genes can now be identified in fungal pathogens by whole genome sequencing and studied in order to predict the biosynthetic potential of those fungi. The pine needle pathogen Dothistroma septosporum is predicted to have only three functional PKS genes, a small number for a hemibiotrophic fungus. One of these genes is required for production of dothistromin, a polyketide virulence factor related to aflatoxin, whose biosynthetic genes are dispersed across one chromosome rather than being clustered. Here we evaluated the evolution of the other two genes, and their predicted gene clusters, using phylogenetic and population analyses. DsPks1 and its gene cluster are quite conserved amongst related fungi, whilst DsPks2 appears to be novel. The DsPks1 protein was predicted to be required for dihydroxynaphthalene (DHN) melanin biosynthesis but functional analysis of DsPks1 mutants showed that D. septosporum produced mainly dihydroxyphenylalanine (DOPA) melanin, which is produced by a PKS-independent pathway. Although the secondary metabolites made by these two PKS genes are not known, comparisons between strains of D. septosporum from different regions of the world revealed that both PKS core genes are under negative selection and we suggest they may have important cryptic roles in planta.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fgb.2017.07.001DOI Listing

Publication Analysis

Top Keywords

pks genes
12
secondary metabolites
8
genes
7
evolution polyketide
4
polyketide synthesis
4
synthesis dothideomycete
4
dothideomycete forest
4
forest pathogen
4
pathogen fungal
4
fungal secondary
4

Similar Publications

Complete genome sequence of the marine mangrove fungus Sarcopodium sp.QM3-1 confirmed its high potential for antimicrobial activity.

Mar Genomics

March 2025

Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, School of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, China; Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang 222005, China. Electronic address:

Mangroves, owing to their unique living environment, serve as an important source of natural bioactive compounds. Sarcopodium sp. QM3-1, a marine fungus isolated from mangrove sediments of Quanzhou Bay, exhibited antifungal activity against the plant pathogen Agrobacterium tumefaciens and Magnaporthe oryzae.

View Article and Find Full Text PDF

Improving polyketide biosynthesis by rescuing the translation of truncated mRNAs into functional polyketide synthase subunits.

Nat Commun

January 2025

State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China.

Modular polyketide synthases (mPKSs) are multidomain enzymes in bacteria that synthesize a variety of pharmaceutically important compounds. mPKS genes are usually longer than 10 kb and organized in operons. To understand the transcriptional and translational characteristics of these large genes, here we split the 13-kb busA gene, encoding a 456-kDa three-module PKS for butenyl-spinosyn biosynthesis, into three smaller separately translated genes encoding one PKS module in an operon.

View Article and Find Full Text PDF

Neptunizhulides, Cryptic -AT Polyketide Synthase-Derived Metabolites from NBU2194.

Org Lett

January 2025

Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.

Genome mining of NBU2194 resulted in the identification of a family of 17-membered macrolides, neptunizhulides A-F. Their structures were elucidated by comprehensive spectroscopic data analysis. Stereochemical assignments of the neptunizhulides were determined by -based configuration analysis, ROESY NMR, Mosher's ester derivatization, and bioinformatic predictions.

View Article and Find Full Text PDF

Biosynthesis of lactacystin as a proteasome inhibitor.

Commun Chem

January 2025

Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.

Lactacystin is an irreversible proteasome inhibitor isolated from Streptomyces lactacystinicus. Despite its importance for its biological activity, the biosynthesis of lactacystin remains unknown. In this study, we identified the lactacystin biosynthetic gene cluster by gene disruption and heterologous expression experiments.

View Article and Find Full Text PDF

Background: The biosynthesis of the natural product family of the polycyclic tetramate macrolactams (PoTeMs) employs an uncommon iterative polyketide synthase/non-ribosomal peptide synthetase (iPKS/NRPS). This machinery produces a universal PoTeM biosynthetic precursor that contains a tetramic acid moiety connected to two unsaturated polyene side chains. The enormous structural and hence functional diversity of PoTeMs is enabled by pathway-specific tailoring enzymes, particularly cyclization-catalyzing oxidases that process the polyene chains to form distinct ring systems, and further modifying enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!