Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lipids are predominant components of the brain and key regulators for neural structure and function. The effect of methamphetamine (METH) on behavior, cognition as well as memory has been intensively investigated; however, the impact of METH on brain lipid profiles is largely unknown. Here, we used a global lipidomic approach to investigate brain lipidome of METH-sensitized mice. We found that repeated METH significantly modified the lipidome in the hippocampus, prefrontal cortex (PFC) and striatum. Interestingly, nucleus accumbens showed no obvious alteration in lipidomic profiling. Phospholipid and sphingolipid metabolisms were profoundly modified in the hippocampus of METH-sensitized mice, exhibiting increased phosphatidic acid and ether phosphatidylcholine but decreased lysophosphatidylethanolamine, lactosylceramide and triglycerides. The fatty acyl length of phospholipids and diacylglycerol longer than 40 carbon were clearly decreased in the hippocampus, and that 36 carbon was decreased in the PFC. These results indicate METH can profoundly affect the metabolism of phospholipids, sphingolipids and glycerolipids in the brain. Our findings reveal a link between remodeled brain lipidome and neurobehavior induced by METH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2017.07.214 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!