Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The tight association between ambient temperature (T) and metabolic rate (MR) is a common occurrence in ectotherms, but the determinants of this association are not fully understood. This study examined whether the relationship between MR and T is the same among individuals, as predicted by the Universal Temperature Dependence hypothesis, or whether this relationship differs between them. We used flow-through respirometry to measure standard MR and to determine gas exchange patterns for 111 individuals of three Carabidae species which differ in size (Abax ovalis, Carabus linnei and C. coriaceus), exposed to four different temperatures (ten individuals of each species measured at 6, 11, 16 and 21°C). We found a significant interaction between ln body mass and the inverse of temperature, indicating that in a given species, the effect of temperature on MR was weaker in larger individuals than in smaller individuals. Overall, this finding shows that the thermal dependence of MR is not body mass invariant. We observed three types of gas exchange patterns among beetles: discontinuous, cyclic and continuous. Additionally, the appearance of these patterns was associated with MR and T. Evolution in diverse terrestrial environments could affect diverse ventilation patterns, which accommodate changes in metabolism in response to temperature variation. In conclusion, explaining the variance in metabolism only through fundamental physical laws of thermodynamics, as predicted by the Universal Temperature Dependence hypothesis, appears to oversimplify the complexity of nature, ignoring evolutionary trade-offs that should be taken into account in the temperature - metabolism relationship.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtherbio.2016.11.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!