Objective: Although minimally invasive posterior cervical foraminotomy (MI-PCF) is an established approach for motion preservation, the outcomes are variable among patients. The objective of this study was to identify significant factors that influence motion preservation after MI-PCF.
Methods: Forty-eight patients who had undergone MI-PCF between 2004 and 2012 on a total of 70 levels were studied. Cervical parameters measured using plain radiography included C2-7 plumb line, C2-7 Cobb angle, T1 slope, thoracic outlet angle, neck tilt, and disc height before and 24 months after surgery. The ratios of the remaining facet joints after MI-PCF were calculated postoperatively using computed tomography. Changes in the distance between interspinous processes (DISP) and the segmental angle (SA) before and after surgery were also measured. We determined successful motion preservation with changes in DISP of ≤3 mm and in SA of ≤2°.
Results: The differences in preoperative and postoperative DISP and SA after MI-PCF were 0.03±3.95 mm and 0.34±4.46°, respectively, fulfilling the criteria for successful motion preservation. However, the appropriate level of motion preservation is achieved in cases in which changes in preoperative and postoperative DISP and SA motions are 55.7 and 57.1%, respectively. Based on preoperative and postoperative DISP, patients were divided into three groups, and the characteristics of each group were compared. Among these, the only statistically significant factor in motion preservation was preoperative disc height (Pearson's correlation coefficient=0.658, <0.001). The optimal disc height for motion preservation in regard to DISP ranges from 4.18 to 7.08 mm.
Conclusion: MI-PCF is a widely accepted approach for motion preservation, although desirable radiographic outcomes were only achieved in approximately half of the patients who had undergone the procedure. Since disc height appears to be a significant factor in motion preservation, surgeons should consider disc height before performing MI-PCF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5544370 | PMC |
http://dx.doi.org/10.3340/jkns.2015.0909.006 | DOI Listing |
Cureus
December 2024
Department of Rehabilitation Medicine, School of Medicine, Showa University, Tokyo, JPN.
Tetanus is a rare but life-threatening neurological disorder caused by neurotoxins produced by . Although mortality rates have significantly decreased with modern intensive care, severe cases remain challenging due to prolonged Intensive Care Unit (ICU) stays, complications, and rehabilitation barriers. We report the case of an 81-year-old male with a history of hypertension and femoral neck fracture who developed severe tetanus following a contaminated forehead laceration.
View Article and Find Full Text PDFJSES Rev Rep Tech
February 2025
Clinique Claude Bernard, Unité de Chirurgie Orthopédique, Metz, France.
Background: The importance of the subscapularis for reverse total shoulder arthroplasty has been demonstrated, especially for internal rotation and stability. In a deltopectoral approach, a detachment of the subscapularis is performed (tenotomy, tuberosity peeling, or osteotomy), but the tendon is not always repairable at the end. When it is repaired, healing is obtained in only 40%-76% of the cases, with potential consequences for the outcomes.
View Article and Find Full Text PDFSpine Deform
January 2025
Spine Unit, Department of Orthopaedic Surgery, Institute of Orthopedics, Lerdsin Hospital, College of Medicine, Rangsit University, 190 Silom Road, Bangkok, 10500, Thailand.
Study Design: A prospective comparative study.
Objectives: To compare the curve flexibility in adolescent idiopathic scoliosis (AIS) using supine traction push-prone and push-prone traction radiographs and to determine which method is more effective in predicting the postsurgical correction.
Background: Preserving spinal motion is one of the critical objectives in adolescent idiopathic scoliosis (AIS) surgery.
Soft Matter
January 2025
Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain.
The effect of gravity on the collective motion of living microswimmers, such as bacteria and micro-algae, is pivotal to unravel not only bio-convection patterns but also the settling of bacterial biofilms on solid surfaces. In this work, we investigate suspensions of microswimmers under the influence of a gravitational field and hydrodynamics, simulated the dissipative particle dynamics (DPD) coarse-grained model. We first study the collective sedimentation of passive colloids and microswimmers of the puller and pusher types upon increasing the imposed gravitational field and compare them with previous results.
View Article and Find Full Text PDFIn image-guided radiotherapy (IGRT), four-dimensional cone-beam computed tomography (4D-CBCT) is critical for assessing tumor motion during a patients breathing cycle prior to beam delivery. However, generating 4D-CBCT images with sufficient quality requires significantly more projection images than a standard 3D-CBCT scan, leading to extended scanning times and increased imaging dose to the patient. To address these limitations, there is a strong demand for methods capable of reconstructing high-quality 4D-CBCT images from a 1-minute 3D-CBCT acquisition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!