Anharmonic vibrational spectra and mode-mode couplings analysis of 2-aminopyridine.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Physics, Aligarh Muslim University, Aligarh 202002, UP, India. Electronic address:

Published: January 2018

Vibrational spectra of 2-aminopyridine (2AP) have been analyzed using the vibrational self-consistence field theory (VSCF), correlated corrected vibrational self-consistence field theory (CC-VSCF) and vibrational perturbation theory (VPT2) at B3LYP/6-311G(d,p) framework. The mode-mode couplings affect the vibrational frequencies and intensities. The coupling integrals between pairs of normal modes have been obtained on the basis of quartic force field (2MR-QFF) approximation. The overtone and combination bands are also assigned in the FTIR spectrum with the help of anharmonic calculation at VPT2 method. A statistical analysis of deviations shows that estimated anharmonic frequencies are closer to the experiment over harmonic approximation. Furthermore, the anharmonic correction has also been carried out for the dimeric structure of 2AP. The fundamental vibration bands have been assigned on the basis of potential energy distribution (PED) and visual look over the animated modes. Other important molecular properties such as frontier molecular orbitals and molecular electrostatics potential mapping have also been analyzed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2017.06.054DOI Listing

Publication Analysis

Top Keywords

vibrational spectra
8
mode-mode couplings
8
vibrational self-consistence
8
self-consistence field
8
field theory
8
bands assigned
8
vibrational
5
anharmonic
4
anharmonic vibrational
4
spectra mode-mode
4

Similar Publications

The structure and dynamics of water at charged graphene interfaces fundamentally influence molecular responses to electric fields with implications for applications in energy storage, catalysis, and surface chemistry. Leveraging the realism of the MB-pol data-driven many-body potential and advanced path-integral quantum dynamics, we analyze the vibrational sum frequency generation (vSFG) spectrum of graphene/water interfaces under varying surface charges. Our quantum simulations reveal a distinctive dangling OH peak in the vSFG spectrum at neutral graphene, consistent with recent experimental findings yet markedly different from those of earlier studies.

View Article and Find Full Text PDF

Polyolefins are unique among synthetic polymers because their wide application envelope originates from a finely controlled microstructure of hydrocarbon chains, lacking any distinctive functional groups. This hampers the methods of automated sorting based on vibrational spectroscopies and calls for much more complex C NMR elucidations. High-temperature cryoprobes have dramatically shortened the acquisition time of C NMR spectra, and few minutes are now enough for polyolefin classification purposes; however, conventional data analysis remains labor and time-consuming.

View Article and Find Full Text PDF

Trivalent chromium (Cr) is a heavy metal widely present in tannery wastewater, and organic ligands represented by gallic acid (GA) have significant effects on the environmental behavior of Cr. This study explored the binding process of Cr with GA through the integration of ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR), and fluorescence spectroscopy coupled with two-dimensional correlation analyses (2DCOS). UV-vis results showed that the average molecular weight of the solutions gradually increased with the addition of Cr ions.

View Article and Find Full Text PDF

Background: Fourier transform infrared spectroscopy (FTIR) is an analytical technique increasingly applied in biological analysis. This study investigates the application of FTIR to identify early biochemical changes, particularly in lipid profiles, in individuals undergoing Roux-en-Y gastric bypass (RYGB).

Methods: An observational study involving patients from a university hospital's Bariatric and Metabolic Surgery Program, with evaluations performed before (T0) and two months after (T1) RYGB.

View Article and Find Full Text PDF

Raman, ROA, and luminescence spectra of chiral lanthanide complexes with L- and D-alanine.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Laboratory for Spectroscopy, Molecular Modeling and Structure Determination, Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, 03-195 Warsaw, Poland. Electronic address:

The Raman spectra of lanthanide [Ln(HO)(Ala)](ClO) crystals were measured with 488, 532, 633, and 1064 nm laser lines, and ROA of complexes in water were collected using 532 nm excitation. As in IR and VCD, ν(CO) stretching and β(OCO) bending vibration bands showed a tendency typical to the lanthanide contraction effect. However, in Raman, the effect is less pronounced than the IR spectrum because it is strongly perturbed by lanthanide ion luminescence, which comes from the 4f → 4f transitions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!