Glucagon and glucagon-like peptide-1 as novel anti-inflammatory and immunomodulatory compounds.

Eur J Pharmacol

Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, n°4365, Manguinhos, CEP 21040-360 Rio de Janeiro, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil. Electronic address:

Published: October 2017

Glucagon and glucagon-like peptide-1 (GLP-1) are polypeptide hormones that are produced by pancreatic α-cells and the intestine, respectively, whose main function is to control glucose homeostasis. The glucagon and GLP-1 levels are imbalanced in diabetes. Furthermore, type 1 diabetic patients and animals present with a diminished inflammatory response, which is related to some morbidities of diabetes, such as a higher incidence of infectious diseases, including sepsis. The focus of this review is to briefly summarize the state of the art concerning the effects of glucagon and GLP-1 on the inflammatory response. Here, we propose that glucagon and GLP-1 have anti-inflammatory properties, making them possible prototypes for the design and synthesis of new compounds to treat inflammatory diseases. In addition, glucagon, GLP-1 or their analogues or new derivatives may not only be important for managing inflammatory diseases but may also have the therapeutic potential to prevent, cure or ameliorate diabetes in patients by counteracting the deleterious effects of pro-inflammatory cytokines on the function and viability of pancreatic β-cells. In addition, GLP-1, its analogues or drugs that inhibit GLP-1 metabolism may have a doubly beneficial effect in diabetic patients by inhibiting the inflammatory response and reducing glycaemia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2017.07.015DOI Listing

Publication Analysis

Top Keywords

glucagon glp-1
16
inflammatory response
12
glucagon glucagon-like
8
glucagon-like peptide-1
8
diabetic patients
8
inflammatory diseases
8
glp-1 analogues
8
glp-1
7
glucagon
6
inflammatory
5

Similar Publications

Neuroendocrine tumors and diabetes mellitus: which treatment and which effect.

Endocrine

January 2025

Unit of Endocrinology, Department of Clinical and Molecular Medicine, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy.

Diabetes mellitus (DM) and neuroendocrine tumors (NET) can exert unfavorable effects on each other prognosis. In this narrative review, we evaluated the effects of NET therapies on glycemic control and DM management and the effects of anti-diabetic therapies on NET outcome and management. For this purpose, we searched the PubMed, Science Direct, and Google Scholar databases for studies reporting the effects of NET therapy on DM as well as the effect of DM therapy on NET.

View Article and Find Full Text PDF

Background: High age is the biggest risk factor for Alzheimer's disease (AD). Approved drugs that slow down the aging process have the potential to be repurposed for the primary prevention of AD. The aim of our project was to use a reverse translational approach to identify such drug candidates in epidemiological data followed by validation in cell-based models and animal models of aging and AD.

View Article and Find Full Text PDF

Cardiovascular effects of tirzepatide.

J Endocrinol

January 2025

S Zoungas, School of Public Health and Preventive Medicine, Monash University Faculty of Medicine Nursing and Health Sciences, Melbourne, Australia.

Tirzepatide is a first-in-class dual agonist at receptors for glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) for the treatment of T2D and obesity with unprecedented efficacy for glycaemic control and reductions in body weight as well as improvements in blood pressure and lipid profile compared with placebo and GLP-1 receptor agonists. To date, clinical trials of tirzepatide have fulfilled the requirement by regulatory authorities of demonstrated cardiovascular safety in high-risk patients. Whether cardiovascular benefits will be found with dual GLP-1/GIP receptor agonists remains uncertain, and the contribution of GIP receptor activation to cardiovascular risk has not been established.

View Article and Find Full Text PDF
Article Synopsis
  • GLP-1 receptor agonists (GLP-1 RAs) may reduce major kidney events and all-cause mortality in patients with type 2 diabetes and chronic kidney disease (CKD).
  • A systematic review included 10 studies involving over 18,000 patients, showing significant benefits with GLP-1 RAs compared to placebo.
  • There were no significant differences in cardiovascular events or mortality, indicating more research may be needed in those areas.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!