A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differential effects between developmental and postpubertal exposure to N-methyl-N-nitrosourea on progenitor cell proliferation of rat hippocampal neurogenesis in relation to COX2 expression in granule cells. | LitMetric

This study was performed to compare the exposure effects of N-methyl-N-nitrosourea (MNU), a cytocidal agent of proliferating cells, on rat hippocampal neurogenesis between developmental and postpubertal periods. Developmental exposure through maternal drinking water from gestational day 6 to day 21 after delivery on weaning decreased GFAP-immunoreactive stem cells and increased immunoreactive cells indicative of subsequent progenitor and postmitotic immature neuronal populations, TUNEL or p21 stem/progenitor cells and COX2 granule cells, on postnatal day (PND) 21. On PND 77 after cessation of developmental exposure, NeuN postmitotic granule cells decreased in number. Postpubertal exposure by oral gavage for 28days decreased the numbers of all granule cell lineage populations and ARC or COX2 granule cells and increased the number of TUNEL stem/progenitor cells. These results suggested that both developmental and postpubertal exposure caused apoptosis of stem/progenitor cells. However, developmental exposure increased COX2 expression to facilitate intermediate progenitor cell proliferation and increased neuronal plasticity. This effect was concurrent with the induction of p21 that causes cell cycle arrest of stem/progenitor cells in response to accumulating DNA damage on weaning, resulting in a subsequent reduction of postmitotic granule cells. In contrast, postpubertal exposure suppressed neuronal plasticity as evidenced by downregulation of ARC and COX2. The COX2 downregulation was responsible for the lack of facilitating stem/progenitor cell proliferation. Induction of apoptosis and the lack of cell proliferation facilitation may be responsible for the overall reduction of neurogenesis caused by postpubertal exposure. Thus, the disrupted pattern of hippocampal neurogenesis induced by MNU is different between developmental and postpubertal exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2017.06.013DOI Listing

Publication Analysis

Top Keywords

postpubertal exposure
24
granule cells
20
developmental postpubertal
16
cell proliferation
16
stem/progenitor cells
16
hippocampal neurogenesis
12
cells
12
developmental exposure
12
exposure
10
progenitor cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!