Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rationale: Impaired maturation of human iPSC-derived cardiomyocytes (hiPSC-CMs) currently limits their use in experimental research and further optimization is required to unlock their full potential.
Objective: To push hiPSC-CMs towards maturation, we recapitulated the intrinsic cardiac properties by electro-mechanical stimulation and explored how these mimetic biophysical cues interplay and influence the cell behaviour.
Methods And Results: We introduced a novel device capable of applying synchronized electrical and mechanical stimuli to hiPSC-CM monolayers cultured on a PDMS membrane and evaluated effects of conditioning on cardiomyocyte structure and function. Human iPSC-CMs retained their cardiac phenotype and displayed adaptive structural responses to electrical (E), mechanical (M) and combined electro-mechanical (EM) stimuli, including enhanced membrane N-cadherin signal, stress-fiber formation and sarcomeric length shortening, most prominent under the EM stimulation. On the functional level, EM conditioning significantly reduced the transmembrane calcium current, resulting in a shift towards triangulation of intracellular calcium transients. In contrast, E and M stimulation applied independently increased the proportion of cells with L-Type calcium currents. In addition, calcium transients measured in the M-conditioned samples advanced to a more rectangular shape.
Conclusion: The new methodology is a simple and elegant technique to systematically investigate and manipulate cardiomyocyte remodelling for translational applications. In the present study, we adjusted critical parameters to optimize a regimen for hiPSC-CM transformation. In the future, this technology will open up new avenues for electro-mechanical stimulation by allowing temporal and spatial control of stimuli which can be easily scaled up in complexity for cardiac development and disease modelling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pbiomolbio.2017.07.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!