Antimony (Sb) pollution in soil may have a negative impact on the health of people consuming rice. This study investigated the effect of silicon (Si) application on rice biomass, iron plaque formation, and Sb uptake and speciation in rice plants with different radial oxygen loss (ROL) using pot experiments. The results demonstrated that Si addition increased the biomass of straw and grain, but had no obvious impact on the root biomass. Indica genotypes with higher ROL underwent greater iron plaque formation and exhibited more Sb sequestration in iron plaque. Silicon treatments increased iron levels in iron plaque from the different genotypes but decreased the total Sb concentration in root, straw, husk, and grain. In addition, Si treatment reduced the inorganic Sb concentrations but slightly increased the trimethylantimony (TMSb) concentrations in rice straw. Moreover, rice straw from hybrid genotypes accumulated higher concentrations of TMSb and inorganic Sb than that from indica genotypes. The conclusions from this study indicate that Sb contamination in rice can be efficiently reduced by applying Si treatment and selecting genotypes with high ROL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2017.06.076 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.
Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Materdicine Lab, School of Life Sciences, Shanghai University, 200444 Shanghai, P. R. China.
The presence of a substantial necrotic core in atherosclerotic plaques markedly heightens the risk of rupture, a consequence of elevated iron levels that exacerbate oxidative stress and lipid peroxidation, thereby sustaining a detrimental cycle of ferroptosis and inflammation. Concurrently targeting both ferroptosis and inflammation is crucial for the effective treatment of vulnerable plaques. In this study, we introduce gallium hexacyanoferrate nanoabsorption catalysts (GaHCF NACs) designed to disrupt this pathological cycle.
View Article and Find Full Text PDFInt J Phytoremediation
January 2025
School of Metallurgy and Environment, Central South University, Changsha, China.
The synergistic application of calcium (Ca) and magnesium (Mg) was investigated to mitigate cadmium (Cd) uptake and translocation in rice grown in Cd-contaminated soil. A pot experiment was conducted using different Ca:Mg molar ratios (Ca1:Mg2, Ca2:Mg1, and Ca1:Mg1) to evaluate their effect on Cd uptake. The results showed that the Ca1:Mg1 treatment achieved the highest reduction in grain Cd content (54.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Life Science, College of Science and General Studies, Alfaisal University, Riyadh 11533, Saudi Arabia.
The hallmark of Alzheimer's disease (AD) is the buildup of amyloid-β (Aβ), which is produced when the amyloid precursor protein (APP) misfolds and deposits as neurotoxic plaques in the brain. A functional iron responsive element (IRE) RNA stem loop is encoded by the APP 5'-UTR and may be a target for regulating the production of Alzheimer's amyloid precursor protein. Since modifying Aβ protein expression can give anti-amyloid efficacy and protective brain iron balance, targeted regulation of amyloid protein synthesis through modulation of 5'-UTR sequence function is a novel method for the prospective therapy of Alzheimer's disease.
View Article and Find Full Text PDFKardiol Pol
January 2025
Department of Coronary and Structural Heart Diseases, National Institute of Cardiology, Warszawa, Poland.
Background: Preliminary research indicates that higher iron levels are associated with worse outcomes in patients with coronary artery disease.
Aims: The study aimed to investigate the relationship between iron levels and the type and composition of coronary plaques.
Methods: In patients with ≥1 coronary stenosis ≥50% on computed tomography angiography, iron levels, presence of high-risk plaque features, such as low-attenuation plaque (LAP), napkin-ring sign, positive remodeling, and spotty calcium, as well as type and plaque composition (calcified/fibrous/fibro-fatty/necrotic core) were evaluated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!