Designing nanocarriers with active targeting has been increasingly emphasized as for an ideal delivery mechanism of anti-cancer therapeutic agents, but the actualization has been constrained by lack of reliable strategy ultimately applicable. Here, we designed and verified a strategy to achieve active targeting nanomedicine that works in a living body, utilizing animal models bearing a patient's tumor tissue and subjected to the same treatments that would be used in the clinic. The concept for this strategy was that a novel peptide probe and its counterpart protein, which responded to a therapy, were identified, and then the inherent ability of the peptide to target the designated tumor protein was used for active targeting in vivo. An initial dose of ionizing radiation was locally delivered to the gastric cancer (GC) tumor of a patient-derived xenograft mouse model, and phage-displayed peptide library was intravenously injected. The peptides tightly bound to the tumor were recovered, and the counterpart protein was subsequently identified. Peptide-conjugated liposomal drug showed dramatically improved therapeutic efficacy and possibility of diagnostic imaging with radiation. These results strongly suggested the potential of our strategy to achieve in vivo functional active targeting and to be applied clinically for human cancer treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2017.06.037 | DOI Listing |
This study evaluates the oncolytic potential of the Moscow strain of reovirus against human metastatic melanoma and glioblastoma cells. The Moscow strain effectively infects and replicates within human melanoma cell lines and primary glioblastoma cells, while sparing non-malignant human cells. Infection leads to the selective destruction of neoplastic cells, mediated by functional viral replication.
View Article and Find Full Text PDFViruses
December 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
Achieving the precise targeting of lentiviral vectors (LVs) to specific cell populations is crucial for effective gene therapy, particularly in cancer treatment where the modulation of the tumor microenvironment can enhance anti-tumor immunity. Programmed cell death protein 1 (PD-1) is overexpressed on activated tumor-infiltrating T lymphocytes, including regulatory T cells that suppress immune responses via FOXP3 expression. We developed PD1-targeted LVs by incorporating the anti-PD1 nanobody nb102c3 into receptor-blinded measles virus H and VSV-G glycoproteins.
View Article and Find Full Text PDFViruses
December 2024
Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA.
This study evaluated influenza A virus (IAV) detection and genetic diversity over time, specifically at the human-swine interface in breeding and nursery farms. Active surveillance was performed monthly in five swine farms in the Midwest United States targeting the employees, the prewean piglets at sow farms, and the same cohort of piglets in downstream nurseries. In addition, information was collected at enrollment for each employee and farm to assess production management practices, IAV vaccination status, diagnostic procedures, and biosecurity.
View Article and Find Full Text PDFViruses
December 2024
Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK.
Seaweed-derived compounds are a renewable resource utilised in the manufacturing and food industry. This study focuses on an enriched seaweed extract (ESE) isolated from The ESE was screened for antiviral activity by plaque reduction assays against influenza A/Puerto Rico/8/1934 H1N1 (PR8), A/X-31 H3N2 (X31) and A/England/195/2009 H1N1 (Eng195), resulting in the complete inhibition of infection. Time of addition assays and FACS analysis were used to help determine the modes of action.
View Article and Find Full Text PDFViruses
December 2024
Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA.
During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!