A comparative transcriptomic and genomic analysis between Arabidopsis thaliana and Glycine max root hair genes reveals the evolution of the expression of plant genes after speciation and whole genome duplication. Our understanding of the conservation and divergence of the expression patterns of genes between plant species is limited by the quality of the genomic and transcriptomic resources available. Specifically, the transcriptomes generated from plant organs are the reflection of the contribution of the different cell types composing the samples weighted by their relative abundances in the sample. These contributions can vary between plant species leading to the generation of datasets which are difficult to compare. To gain a deeper understanding of the evolution of gene transcription in and between plant species, we performed a comparative transcriptomic and genomic analysis at the level of one single plant cell type, the root hair cell, and between two model plants: Arabidopsis (Arabidopsis thaliana) and soybean (Glycine max). These two species, which diverged 90 million years ago, were selected as models based on the large amount of genomic and root hair transcriptomic information currently available. Our analysis revealed in detail the transcriptional divergence and conservation between soybean paralogs (i.e., the soybean genome is the product of two successive whole genome duplications) and between Arabidopsis and soybean orthologs in this single plant cell type. Taking advantage of this evolutionary study, we combined bioinformatics, molecular, cellular and microscopic tools to characterize plant promoter sequences and the discovery of two root hair regulatory elements (RHE1 and RHE2) consistently and specifically active in plant root hair cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11103-017-0630-8 | DOI Listing |
J Biomech Eng
January 2025
School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Ave, Norman, OK 73019, USA.
Hearing loss is highly related to acoustic injuries and mechanical damage of ear tissues. The mechanical responses of ear tissues are difficult to measure experimentally, especially cochlear hair cells within the organ of Corti (OC) at microscale. Finite element (FE) modeling has become an important tool for simulating acoustic wave transmission and studying cochlear mechanics.
View Article and Find Full Text PDFMicroorganisms
December 2024
Laboratorio de Fisiología Molecular de Plantas, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, Cuernavaca 62209, Mexico.
Bacteria associated with plants, whether rhizospheric, epiphytic, or endophytic, play a crucial role in plant productivity and health by promoting growth through complex mechanisms known as plant growth promoters. This study aimed to isolate, characterize, identify, and evaluate the potential of endophytic bacteria from the resurrection plant in enhancing plant growth, using ecotype Col. 0 as a model system.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Plant Biology and Biotechnology, Timiryazev Str. 45, 050040, Almaty, Kazakhstan.
Horses are animals traditionally playing prominent role as both food source and working animals for Kazakh people. Zhabe horses are traditional type of indigenous Kazakh horses characterized by versatility and adaptation to conditions of Central Asia. The present work focuses on examination of genetic structure of Zhabe horses using SNP genotyping with addition of previously published data.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
Nutraceutical Wellness Inc., New York, New York, USA.
Background: Hair thinning in men is a prevalent issue for which treatment oftentimes consists of a multi-modal approach. Targeting key root causes of hair thinning, such as hormones, stress, and metabolism through vitamins, minerals, and botanicals, has been shown to be effective in improving hair growth and quality in women. This approach could also be effective in improving hair growth and quality in men with thinning hair.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Systems Biology, Yonsei University, Seoul, 03722, Republic of Korea. Electronic address:
The root epidermis of Arabidopsis (Arabidopsis thaliana) consists of two distinct cell types: hair (H) cells and non-hair (N) cells, whose patterning is regulated by a network of genes. Among these, the WEREWOLF (WER) gene, encoding an R2R3 MYB transcription factor, acts as a master regulator by promoting the expression of key downstream genes, such as GLABRA2 and CAPRICE. However, the mechanisms controlling WER expression have remained largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!