The diatom cell wall, or frustule, is a highly complex, three-dimensional structure consisting of nanopatterned silica as well as proteins and other organic components. While some key components have been identified, knowledge on frustule biosynthesis is still fragmented. The model diatom Thalassiosira pseudonana was subjected to silicon (Si) shift-up and shift-down situations. Cellular and molecular signatures, dynamic changes and co-regulated clusters representing the hallmarks of cellular and molecular responses to changing Si availabilities were characterised. Ten new proteins with silaffin-like motifs, two kinases and a novel family of putatively frustule-associated transmembrane proteins induced by Si shift-up with a possible role in frustule biosynthesis were identified. A separate cluster analysis performed on all significantly regulated silaffin-like proteins (SFLPs), as well as silaffin-like motifs, resulted in the classification of silaffins, cingulins and SFLPs into distinct clusters. A majority of the genes in the Si-responsive clusters are highly divergent, but positive selection does not seem to be the driver behind this variability. This study provides a high-resolution map over transcriptional responses to changes in Si availability in T. pseudonana. Hallmark Si-responsive genes are identified, characteristic motifs and domains are classified, and taxonomic and evolutionary implications outlined and discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501833PMC
http://dx.doi.org/10.1038/s41598-017-04921-0DOI Listing

Publication Analysis

Top Keywords

frustule biosynthesis
8
cellular molecular
8
silaffin-like motifs
8
dynamic responses
4
responses silicon
4
silicon thalasiossira
4
thalasiossira pseudonana
4
pseudonana identification
4
identification characterisation
4
characterisation classification
4

Similar Publications

The benthic pennate diatom Nitzschia navis-varingica, known for producing domoic acid (DA) and its isomers, is widely distributed in the Western Pacific (WP) region. To investigate the genetic differentiation and gene flow patterns among the populations in the WP, the genetic diversity of 354 strains of N. navis-varingica was analysed using two nuclear-encoded rDNA loci: the large subunit rDNA (LSU rDNA) and the internal transcribed spacer 2 (ITS2).

View Article and Find Full Text PDF

The increase in industrial production of multi-walled carbon nanotubes (MWCNTs) raises concerns about their potential adverse effects associated to environmental releases, especially in aquatic environments where they are likely to accumulate. This study focuses on the environmental impact of MWCNTs, specifically on a benthic freshwater diatom (Nitzschia linearis), which plays a major role in the primary production of water bodies. The obtained results indicate that exposure to MWCNTs in the presence of natural organic matter (NOM) inhibits diatom's growth in a dose-dependent manner after 72 h of exposure.

View Article and Find Full Text PDF

Biosilica-coated carbonic anhydrase displayed on Escherichia coli: A novel design approach for efficient and stable biocatalyst for CO sequestration.

Int J Biol Macromol

October 2024

Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea. Electronic address:

A robust and stable carbonic anhydrase (CA) system is indispensable for effectively sequestering carbon dioxide to mitigate climate change. While microbial surface display technology has been employed to construct an economically promising cell-displayed CO-capturing biocatalyst, the displayed CA enzymes were prone to inactivation due to their low stability in harsh conditions. Herein, drawing inspiration from biomineralized diatom frustules, we artificially introduced biosilica shell materials to the CA macromolecules displayed on Escherichia coli surfaces.

View Article and Find Full Text PDF

The draft genome of Nitzschia closterium f. minutissima and transcriptome analysis reveals novel insights into diatom biosilicification.

BMC Genomics

June 2024

Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS) & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Haikou, 571101, China.

Background: Nitzschia closterium f. minutissima is a commonly available diatom that plays important roles in marine aquaculture. It was originally classified as Nitzschia (Bacillariaceae, Bacillariophyta) but is currently regarded as a heterotypic synonym of Phaeodactylum tricornutum.

View Article and Find Full Text PDF

The diatom's frustule, characterized by its rugged and porous exterior, exhibits a remarkable biomimetic morphology attributable to its highly ordered pores, extensive surface area, and unique architecture. Despite these advantages, the toxicity and nonbiodegradable nature of silica-based organisms pose a significant challenge when attempting to utilize these organisms as nanotopographically functionalized microparticles in the realm of biomedicine. In this study, we addressed this limitation by modulating the chemical composition of diatom microparticles by modulating the active silica metabolic uptake mechanism while maintaining their intricate three-dimensional architecture through calcium incorporation into living diatoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!