Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There is growing agreement that subducted sediments recycled into the deep mantle could make a significant contribution to the generation of various mantle-derived rocks. However, solid evidence and examples to support this view are few, and whether or not the subducted sediments can act as the dominating material source for the magma is unclear. Here, we report a comprehensive geochemical study that demonstrates that the newly identified Early Mesozoic calc-alkaline lamprophyres in the northern Guangxi Province, southeastern Yangtze Block in South China were likely derived in large part from the partial melting of the subducted terrigenous sediments in the deep mantle. The investigated lamprophyres are SiO-rich minettes, characterized by moderate TFeO and MgO and high Mg (>70). The multi-element pattern shows a typical crustal-like signature, such as enrichments in large-ion lithophile elements (LILE) and light rare earth elements (LREE) with troughs in Nb-Ta, Ti and Eu and peaks in Th-U and Pb. These rocks also show sediment-like ratios of Nb/U, Nb/Th and Ce/Pb, together with extremely radiogenic Sr/Sr (0.71499-0.71919), unradiogenic Nd/Nd (0.51188-0.51195) and radiogenic Pb/Pb (15.701-15.718) isotopic compositions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501806 | PMC |
http://dx.doi.org/10.1038/s41598-017-05228-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!