We have developed a AuNP-CTG based probing system that is applicable to the detection of many units of CAG repeat sequences which was synthesized by a rolling circle amplification (RCA) system with changes in fluorescence. We also demonstrate that our AuNP-CTG based probing system could transfect without using transfection reagent and detect target CAG repeat sequences in HeLa cells with dramatic changes in fluorescence. This AuNP-CTG based probing system could also be used, in conjunction with the CAG repeat RCA system, to detect target DNA. This system was so sensitive to the target DNA that it could detect even picomolar amounts with amplification of the fluorescence signal. Furthermore, we have used our gold-based CAG probing system for the detection of RNA CAG repeat sequences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2017.06.067 | DOI Listing |
Dalton Trans
January 2025
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
Assembling chiral coordination polymers into nano/microflower structures may improve their performance in applications such as chiral recognition and separation. In this study, we chose a chiral metal phosphonate system, , In(NO)/-, -pempH [pempH = (1-phenylethylamino)methylphosphonic acid], and carried out systematic work on the self-assembly of this system in different alcohol/HO mixed solvents under solvothermal conditions. Enantiomeric compounds -, -[In(pempH)(μ-OH)(HO)](NO) (R-, S-1) were obtained showing dense layered structures, but their morphologies varied with alcohol solvent.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari, Japan.
Purpose: Redox homeostasis plays a key role in regulating the overall health and development of organisms. This study aimed to develop a compact and mobile continuous-wave (CW) electron paramagnetic resonance (EPR) imager to facilitate stable, highly sensitive fast three-dimensional (3D) whole-body imaging of nitroxide-infused mice.
Methods: A multiturn loop gap resonator with a diameter of 30 mm and length of 35 mm was designed for whole-body EPR imaging.
Med Devices (Auckl)
January 2025
Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah, Salt Lake City, Utah, USA.
Purpose: The aim of this study was to use calorimetry to understand the difference in energy transferred by three phacoemulsification surgical platforms to the eye.
Patients And Methods: A phacoemulsification tip was lowered into a double-walled calorimeter filled with distilled water. The foot pedal was depressed for 30 seconds and the change in temperature of the water was measured by a temperature probe.
Front Cell Infect Microbiol
January 2025
The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
Objective: To establish a rapid detection method for canine using recombinase-aided amplification (RAA) technology.
Methods: The outer membrane protein 25 gene fragment (Omp25) of canis was targeted. Primers and fluorescent probes were designed and synthesized, and recombinant plasmids were constructed as standards.
RSC Chem Biol
January 2025
School of Chemistry, Advanced Research Centre, University of Glasgow 11 Chapel Lane Glasgow G11 6EW UK
Peptide stapling is an effective strategy to stabilise α-helical peptides, enhancing their bioactive conformation and improving physiochemical properties. In this study, we apply our novel diyne-girder stapling approach to the MDM2/MDMX α-helical binding region of the p53 transactivation domain. By incorporation of an unnatural amino acid to create an optimal , + 7 bridge length, we developed a highly α-helical stapled peptide, 4, confirmed circular dichroism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!