1-methyl-4-phenylpyridine (MPP+), a major product of the oxidation of the neurotoxic amine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been postulated to be the compound responsible for destruction of nigrostriatal neurons in man and primates and for inhibition of mitochondrial NADH oxidation which leads to cell death. We have confirmed that 0.5 mM MPP+ inhibits extensively the oxidation of NAD+-linked substrates in intact liver mitochondria in State 3 and after uncoupling, while succinate oxidation is unaffected. However, in inverted mitochondria, inner membrane preparations, and Complex I NADH oxidation is not significantly affected at this concentration of MPP+, nor are malate and glutamate dehydrogenases or the carriers of these substrates inhibited. We report here the discovery of an uptake system for MPP+ in mitochondria which is greatly potentiated by the presence of malate plus glutamate and inhibited by respiratory inhibitors, suggesting an energy-dependent carrier. A 40-fold concentration of MPP+ in the mitochondria occurs in ten minutes. This might account for the inhibition of malate and glutamate oxidation in intact mitochondria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-291x(86)80483-1DOI Listing

Publication Analysis

Top Keywords

mpp+ mitochondria
12
malate glutamate
12
1-methyl-4-phenylpyridine mpp+
8
inhibition mitochondrial
8
oxidation nad+-linked
8
nad+-linked substrates
8
nadh oxidation
8
concentration mpp+
8
mpp+
7
oxidation
7

Similar Publications

Cicadae Periostracum (CP) is a traditional Chinese animal-derived medicine with the potential to treat Parkinson's disease (PD). This study aims to explore the pharmacodynamic mechanisms of CP against PD-based on metabolomics technology and provide a theoretical basis for developing new anti-PD medicine. First, MPP-induced SH-SY5Y cells were used to evaluate the anti-PD activity of CP.

View Article and Find Full Text PDF

Melittin (MEL) is the main bioactive component of bee venom and has been reported to have various pharmacological effects. This study investigates the protective effect of MEL on MPP-injured HT22 cells and the possible mechanisms involved. We treated the cells with 4 mM MPP for 24 h to induce a cellular injury model.

View Article and Find Full Text PDF

Robust In Vitro Models for Studying Parkinson's Disease? LUHMES Cells and SH-SH5Y Cells.

Int J Mol Sci

December 2024

Cellular Physiology Research Lab, School of Medicine, Department of Physiology, University of Galway, H91W5P7 Galway, Ireland.

As our population ages, there is an increased unmet clinical need surrounding neurodegenerative diseases such as Parkinson's disease (PD). To tackle this ever-increasing problem, we must ensure that the cell models that we use to develop therapeutics in vitro are robust, reliable, and replicable. In this study, we compared SH-SY5Y cells with LUHMES cells in response to 6-Hydroxydopamine (6OHDA) and 1-Methyl-4-phenylpyridinium (MPP+), two common Parkinson's insults used in in vitro analysis.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a prevalent neurodegenerative disease for which no effective treatment currently exists. In this study, we identified formononetin (FMN), a neuroprotective component found in herbal medicines such as and , as a potential agent targeting multiple pathways involved in PD. To investigate the anti-PD effects of FMN, we employed () PD models, specifically the transgenic strain NL5901 and the MPP(+)-induced strain BZ555, to investigate the effects of FMN on the key pathological features of PD, including dyskinesia, dopamine neuron damage, and reactive oxygen species (ROS) accumulation.

View Article and Find Full Text PDF

Human mitochondrial peroxiredoxin Prdx3 is dually localized in the intermembrane space and matrix subcompartments.

Redox Biol

December 2024

Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brazil. Electronic address:

Peroxiredoxin 3 (Prdx3) is the major sink for HO and other hydroperoxides within mitochondria, yet the mechanisms guiding the import of its cytosolic precursor into mitochondrial sub-compartments remain elusive. Prdx3 is synthesized in the cytosol as a precursor with an N-terminal cleavable presequence, which is frequently proposed to target the protein exclusively to the mitochondrial matrix. Here, we present a comprehensive analysis of the human Prdx3 biogenesis, using highly purified mitochondria from HEK293T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!