Noncalssical multiscale modeling of ssDNA manipulation using a CNT-nanocarrier based on AFM.

Colloids Surf B Biointerfaces

Robotic Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran.

Published: October 2017

Nanocarriers are useful tools in biological and medical research fields. In nanomanipulation, a nondestructive and successful process can be achieved by using nanocarriers. In this paper, a nonclassical multiscale approach has been presented for modeling a single strand DNA (ssDNA) manipulation based on AFM. To achieve a nondestructive nanomanipulation process, carbon nanotube (CNT) has been used as a nanocarrier. AFM setup has been separated into a Micro field (MF) and a Nano field (NF). The governing equations of the MF have been derived based on Kirchhoff plate model and a modified couple stress theory. The NF has been modeled by molecular dynamics (MD) method. A set of nanomanipulations has been performed for the free ssDNA and the ssDNA inside the nanocarrier (shielded ssDNA) on three types of substrates. The exerted forces on the free ssDNA and the shielded ssDNA have been compared for manipulation on various substrates. The results show that using the nanocarrier reduces the manipulation force considerably. The results of RMSD as a general geometrical criterion have illustrated that the maximum damage occurs on the golden substrate for free ssDNA. Elongation and curvature criteria have been presented to investigate the ssDNA deformation in detail. The elongation and curvature criteria have been shown that using a nanocarrier is a good approach for a successful and nondestructive nanomanipulation. Finally it can be concluded that the manipulation process of free ssDNA on silicon substrate is successful as well as the manipulation process of the shielded ssDNA on all three types of substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2017.06.017DOI Listing

Publication Analysis

Top Keywords

free ssdna
16
shielded ssdna
12
ssdna
11
ssdna manipulation
8
based afm
8
nondestructive nanomanipulation
8
ssdna three
8
three types
8
types substrates
8
elongation curvature
8

Similar Publications

Magnetic relaxation switch biosensor for detection of Vibrio parahaemolyticus based on photocleavable hydrogel.

Anal Chim Acta

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China. Electronic address:

Background: Foodborne pathogens, particularly Vibrio parahaemolyticus (VP) found in seafood, pose significant health risks, including abdominal pain, nausea, and even death. Rapid, accurate, and sensitive detection of these pathogens is crucial for food safety and public health. However, existing detection methods often require complex sample pretreatment, which limits their practical application.

View Article and Find Full Text PDF

Amplification-free CRISPR/Cas based dual-enzymatic colorimetric nucleic acid biosensing device.

Lab Chip

January 2025

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.

Nucleic acid testing (NAT) is widely considered the gold standard in analytical fields, with applications spanning environmental monitoring, forensic science and clinical diagnostics, among others. However, its widespread use is often constrained by complicated assay procedures, the need for specialized equipment, and the complexity of reagent handling. In this study, we demonstrate a fully integrated 3D-printed biosensensing device employing a CRISPR/Cas12a-based dual-enzymatic mechanism for highly sensitive and user-friendly nucleic acid detection.

View Article and Find Full Text PDF

Affinity Tag-Free Purification of SARS-CoV-2 N Protein and Its Crystal Structure in Complex with ssDNA.

Biomolecules

November 2024

Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.

The nucleocapsid (N) protein is one of the four structural proteins in SARS-CoV-2, playing key roles in viral assembly, immune evasion, and stability. One of its primary functions is to protect viral RNA by forming the nucleocapsid. However, the precise mechanisms by which the N protein interacts with viral RNA and assembles into a nucleocapsid remain unclear.

View Article and Find Full Text PDF

To enhance the biomarker diagnostics sensitivity and selectivity of human papillomavirus type 16 oncoprotein E7 (HPV16 E7) in serum, a label/enzyme-free electrochemical detection platform was developed. This platform featured a type of "Super-turn-off" nanobiosensor monitored through differential pulse voltammetry (DPV). It integrated the magnetic self-assembly property of the α-FeO/FeO@Au/Sub/BSA signal transport nano-medium with the high specificity of CRISPR/Cas14a and the amplification capability of the bipedal walker (DNA walker composed of two ssDNA strands), resulting in the enhanced specificity and anti-interference performance while remaining stable at 4 °C for over 30 days.

View Article and Find Full Text PDF

HRP-integrated CRISPR-Cas12a biosensor for rapid point-of-care detection of Langya henipavirus.

iScience

December 2024

Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), School of Laboratory Medicine, Chongqing Medical University, 1 Xueyuan Road, Chongqing 400016, China.

Article Synopsis
  • The COVID-19 pandemic revealed the urgent need for better diagnostic tools to quickly identify new infectious diseases, such as Langya henipavirus (LayV).
  • Researchers developed a sensitive detection method using CRISPR-Cas12a, allowing LayV RNA to be identified at just 10 copies/μL within 30 minutes at room temperature.
  • A new HRP-ssDNA reporter was designed so that CRISPR-Cas12a can detect LayV RNA without needing pre-amplification, achieving visibility of 1,200 copies/μL to the naked eye, enhancing point-of-care testing in resource-limited areas.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!