Developing The Tri-parental Exotic Wheat Population Sw84: Genetic diversity of cultivated wheat was markedly reduced, first, during domestication and, second, since the onset of modern elite breeding. There is an increasing demand for utilizing genetic resources to increase genetic diversity and, simultaneously, to improve agronomic performance of cultivated wheat. To locate favorable effects of exotic wheat alleles, we developed the tri-parental wheat population SW84. The population was derived from crossing the hexaploid spring wheat cultivars Triso and Devon with one synthetic exotic donor accession, Syn084L, followed by two rounds of backcrossing and three rounds of selfing. SW84 consists of 359 BC2F4 lines, split into two families, D84 (Devon*Syn084L) and T84 (Triso*Syn084L).

Studying The Genetic Control Of Grain Quality In Sw84: As a case study, grain quality of SW84 was studied in replicated field trials. Transgressive segregation was observed for all studied grain quality traits by evaluating SW84 for two years at two locations under low and high nitrogen supply. Subsequently, a genome-wide association study (GWAS) was carried out based on genomic data derived from a 90k Infinium iSELECT single nucleotide polymorphism (SNP) array. In total, GWAS yielded 37 marker-trait associations, summarized to 16 quantitative trait loci (QTL). These SNPs indicate genetic regulators of grain protein content, grain hardness, sedimentation value and sedimentation ratio. The majority of exotic QTL alleles (75%) exerted favorable effects, increasing grain protein content and sedimentation value in ten and two cases, respectively. For instance, two exotic QTL alleles were associated with a substantial increase of grain protein content and sedimentation value by 1.09% and 7.31 ml, respectively. This finding confirms the potential of exotic germplasm to improve grain quality in cultivated wheat. So far, the molecular nature of most of the detected QTL is unknown. However, two QTL correspond to known genes controlling grain quality: The major QTL on chromosome 6B, increasing grain protein content by 0.70%, on average, co-localizes with the NAM-B1 gene, known to control grain protein content as well as iron and zinc content. Likewise, the major QTL on chromosome 5D, reducing grain hardness by 8.98%, on average, co-localizes with the gene for puroindoline b (Pinb-D1) at the Ha locus. In total, 13 QTL were detected across families, whereas one and three QTL were exclusively detected in families D84 and T84, respectively. Likewise, ten QTL were detected across nitrogen treatments, whereas one and five QTL were exclusively detected under low and high N treatments, respectively. Our data indicate that most effects in SW84 act across families and N levels. Merging of data from two families or two N treatments may, thus, be considered in association studies to increase sample size and, as a result, QTL detection power.

Utilizing Favorable Exotic Qtl Alleles In Wheat Breeding: Our study serves as a model how favorable exotic QTL alleles can be located in exotic germplasm of wheat. In future, the localized favorable exotic QTL alleles will be utilized in wheat breeding programs to simultaneously improve grain quality and selectively expand genetic diversity of the elite wheat gene pool.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501409PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179851PLOS

Publication Analysis

Top Keywords

grain quality
28
exotic qtl
24
grain protein
20
protein content
20
qtl alleles
20
qtl
15
grain
14
improve grain
12
wheat
12
wheat population
12

Similar Publications

WGAN-GP for Synthetic Retinal Image Generation: Enhancing Sensor-Based Medical Imaging for Classification Models.

Sensors (Basel)

December 2024

Computer Science Department, Instituto Nacional de Astrofísica Óptica y Electrónica, Luis Enrrique Erro No. 1, Sta. María Tonantzintla, Puebla 72840, Mexico.

Accurate synthetic image generation is crucial for addressing data scarcity challenges in medical image classification tasks, particularly in sensor-derived medical imaging. In this work, we propose a novel method using a Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) and nearest-neighbor interpolation to generate high-quality synthetic images for diabetic retinopathy classification. Our approach enhances training datasets by generating realistic retinal images that retain critical pathological features.

View Article and Find Full Text PDF

Deep learning-based morphometric analysis of zebrafish is widely utilized for non-destructively identifying abnormalities and diagnosing diseases. However, obtaining discriminative and continuous organ category decision boundaries poses a significant challenge by directly observing zebrafish larvae from the outside. To address this issue, this study simplifies the organ areas to polygons and focuses solely on the endpoint positioning.

View Article and Find Full Text PDF

Accurate and timely air quality forecasting is crucial for mitigating pollution-related hazards and protecting public health. Recently, there has been a growing interest in integrating visual data for air quality prediction. However, some limitations remain in existing literature, such as their focus on coarse-grained classification, single-moment estimation, or reliance on indirect and unintuitive information from visual images.

View Article and Find Full Text PDF

Improved Deep Support Vector Data Description Model Using Feature Patching for Industrial Anomaly Detection.

Sensors (Basel)

December 2024

Zhejiang HOUDAR Intelligent Technology Co., Ltd., Hangzhou 310023, China.

In industrial contexts, anomaly detection is crucial for ensuring quality control and maintaining operational efficiency in manufacturing processes. Leveraging high-level features extracted from ImageNet-trained networks and the robust capabilities of the Deep Support Vector Data Description (SVDD) model for anomaly detection, this paper proposes an improved Deep SVDD model, termed Feature-Patching SVDD (FPSVDD), designed for unsupervised anomaly detection in industrial applications. This model integrates a feature-patching technique with the Deep SVDD framework.

View Article and Find Full Text PDF

Brewers' spent grain (BSG), the major by-product of the brewery industry, has high nutritional value, making it suitable for upcycling into products such as healthy, and sustainable cookies. Nonetheless, the incorporation of BSG in cookies can impact their quality, given the increased fiber and protein content. This work explored the effect of replacing wheat flour with BSG at 50% and 75% in cookie formulations, focusing on physical, chemical, and sensory properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!