We previously reported that EphA4, a member of the Eph family of receptor tyrosine kinases, is an important modulator of growth hormone (GH) signaling, leading to augmented synthesis of insulin-like growth factor 1 (IGF1) for postnatal body growth. In the present study, we report the molecular interactions of EphA4, GH receptor (GHR), Janus kinase 2 (JAK2), and signal transducer and activator of transcription 5B (STAT5B). EphA4 binds to GHR at both its extracellular and intracellular domains and phosphorylates GHR when stimulated with a ligand. The cytoplasmic domain of EphA4 binds to the carboxy-terminus of JAK2 in contrast to the known binding of GHR to the amino-terminus. STAT5B binds to the amino-terminal kinase domain of EphA4. Ligand-activated EphA4 and JAK2 phosphorylate each other and STAT5B, but JAK2 does not appear to phosphorylate EphA4-bound STAT5B. Ligand-activated EphA4 induces the nuclear translocation of STAT5B in a JAK2-independent manner. GHR expression is required for the activation of STAT5B signaling, even via the JAK2-independent pathway. Various ephrins that have affinity for EphA4 induce STAT5B phosphorylation. These findings suggest the molecular mechanisms by which ephrin/EphA4 signaling enhances the canonical GH-IGF1 axis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501605PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180785PLOS

Publication Analysis

Top Keywords

epha4
9
molecular interactions
8
interactions epha4
8
growth hormone
8
janus kinase
8
signal transducer
8
transducer activator
8
activator transcription
8
epha4 binds
8
domain epha4
8

Similar Publications

Constrained β-Hairpins Targeting the EphA4 Ligand Binding Domain.

J Med Chem

December 2024

Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States.

The activity of the receptor tyrosine kinase EphA4 has been implicated in several pathologies including oncology (gastric and pancreatic cancers) and neurodegenerative diseases (amyotrophic lateral sclerosis and Alzheimer's disease). However, advances in validating EphA4 as a possible drug target have been limited by the lack of suitable pharmacological inhibitors. Recently, we reported on the design of potent EphA4 agonistic agents targeting its ligand binding domain (LBD).

View Article and Find Full Text PDF

EphA4 mediates ephrinB1-dependent adhesion in retinal ganglion cells.

J Neurosci

December 2024

Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH). Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550 (Spain)

Eph/ephrin signaling is crucial for organizing retinotopic maps in vertebrates. Unlike other EphAs, which are expressed in the embryonic ventral retina, EphA4 is found in the retinal ganglion cell (RGC) layer at perinatal stages, and its role in mammalian visual system development remains unclear. Using classic stripe assays, we demonstrate that, while RGC axons are repelled by ephrinB2, they grow on ephrinB1 stripes through EphA4-mediated adhesion.

View Article and Find Full Text PDF

Background: Erythropoietin-producing hepatocellular carcinoma A4 (EphA4) is implicated in the pathophysiology of amyotrophic lateral sclerosis. EphA4 fusion protein (EphA4-Fc) inhibits EphA4 function in vivo but is too short-lived for prolonged therapy. NUN-004 (mEphA4-Fc) is a modified EphA4-Fc engineered for an extended half-life.

View Article and Find Full Text PDF

To investigate physiological function of α-synuclein is important for understanding its pathophysiological mechanism in synucleinopathies including Parkinson's disease. Employing knockout mice, we found that Snac/α-synuclein deletion induced aberrant projection of olfactory sensory neurons and hyposmia. We identified 9 axon guidance associated differentially expressed proteins using iTRAQ based Liquid Chromatograph Mass Spectrometer.

View Article and Find Full Text PDF

Purpose: Retinal neovascularization poses heightened risks of vision loss and blindness. Despite its clinical significance, the molecular mechanisms underlying the pathogenesis of retinal neovascularization remain elusive. This study utilized single-cell multiomics profiling in an oxygen-induced retinopathy (OIR) model to comprehensively investigate the intricate molecular landscape of retinal neovascularization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!