Multiple sclerosis (MS) is a highly detrimental autoimmune disease of the central nervous system. There is no cure for it but the treatment typically focuses on subsiding severity and recurrence of the disease. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS. It is characterized by frequent relapses due to the generation of memory T cells. Caerulomycin A (CaeA) is known to suppress the Th1 cells, Th2 cells, and Th17 cells. Interestingly, it enhances the generation of regulatory T cells (Tregs). Th1 cells and Th17 cells are known to aggravate EAE, whereas Tregs suppress the disease symptoms. Consequently, in the current study we evaluated the influence of CaeA on EAE. Intriguingly, we observed by whole body imaging that CaeA regressed the clinical symptoms of EAE. Further, there was reduction in the pool of Th1 cells, Th17 cells, and CD8 T cells. The mechanism involved in suppressing the EAE symptoms was due to the inhibition in the generation of effector and central memory T cells and induction of the expansion of Tregs. In essence, these findings implicate that CaeA may be considered as a potent future immunosuppressive drug.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08916934.2017.1332185DOI Listing

Publication Analysis

Top Keywords

cells
12
th1 cells
12
cells th17
12
th17 cells
12
experimental autoimmune
8
autoimmune encephalomyelitis
8
memory cells
8
eae
5
caerulomycin suppresses
4
suppresses differentiation
4

Similar Publications

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Multiple gene-deletion vaccinia virus Tiantan strain against mpox.

Virol J

January 2025

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, People's Republic of China.

Monkeypox virus (MPXV) is an important zoonotic pathogenic virus, which poses serious threats to public health. MPXV infection can be prevented by immunization against the variola virus. Because of the safety risks and side effects of vaccination with live vaccinia virus (VACV) strain Tian Tan (VTT), we constructed two gene-deleted VTT recombinants (TTVAC7 and TTVC5).

View Article and Find Full Text PDF

Purpose: Prior sperm DNA fragmentation index (DFI) thresholds for diagnosing male infertility and predicting assisted reproduction technology (ART) outcomes fluctuated between 15 and 30%, with no agreed standard. This study aimed to evaluate the impact of the sperm DFI on early embryonic development during ART treatments and establish appropriate DFI cut-off values.

Methods: Retrospectively analyzed 913 couple's ART cycles from 2021 to 2022, encompassing 1,476 IVF and 295 ICSI cycles, following strict criteria.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

Guillain-Barré syndrome following falciparum malaria infection: a case report.

BMC Neurol

January 2025

Department of Radiology, School of Medicine, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Teferi, Ethiopia.

Background: Malaria is an infectious disease caused by Plasmodium parasites, transmitted to humans by infected female Anopheles mosquitoes. Five Plasmodium species infect humans: P. vivax, P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!