A large part of the population is exposed to metals and metalloids through the diet. Most of the in vivo studies on its toxicokinetics and toxicity are conducted by means of exposure through drinking water or by intragastric or intraperitoneal administration of aqueous standards, and therefore they do not consider the effect of the food matrix on the exposure. Numerous studies show that some components of the diet can modulate the toxicity of these food contaminants, reducing their effect on a systemic level. Part of this protective role may be due to a reduction of intestinal absorption and subsequent tissue accumulation of the toxic element, although it may also be a consequence of their ability to counteract the toxicity directly by their antioxidant and/or anti-inflammatory activity, among other factors. The present review provides a compilation of existing information about the effect that certain components of the diet have on the toxicokinetics and toxicity of the metals and metalloids of greatest toxicological importance that are present in food (arsenic, cadmium, lead, and mercury), and of their most toxic chemical species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408398.2017.1302407 | DOI Listing |
Sci Rep
January 2025
Praxis Dr.Carmine, Etzelstrasse 21, Pfaeffikon SZ, 8808, Switzerland.
Spot-urinary biomarkers are crucial in medical, epidemiological, and environmental studies, but their variability due to hydration levels requires precise dilution adjustments. Traditional methods, like conventional creatinine correction (CCRC), are limited in compensating for variations in urine concentration, causing substantial inconsistencies, particularly at the extremes of the diuresis spectrum. While restricting the creatinine (CRN) range to 0.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade 11120, Serbia. Electronic address:
Effective protection of groundwater requires an accurate health risk assessment of contaminants; however, the diversity of pollution sources, variability, and uncertainties in exposure parameters present significant challenges in this assessment. In this study, groundwater risk estimates associated with NO, and F, along with fourteen heavy metal(loid)s (V, Cr, Mn, Fe, Ni, Cu, As, Co, Cd, Se, Pb, Hg, Zn, and Al) in an agricultural area were optimized by implementing positive matrix factorization (PMF), multilinear regression, and two-dimensional Monte Carlo simulations to characterize source-specific health risks. Groundwater pollution was analyzed considering regional variations, including differences in elevation, land use and land cover, and soil types.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Military Health Department, Veterinary Service Centre, Ministry of Defence of Republic of Serbia, Crnotravska 17, 11000, Belgrade, Serbia.
Three fish species (common carp, Wels catfish, and silver carp) were collected from three locations along the Danube River in Serbia, and fish meat was analyzed for the content of toxic elements, micro- and macrominerals. Silver carp had the highest lead (Pb), arsenic (As), and cadmium (Cd) content, while Wels catfish had the highest level of mercury (Hg). Moreover, metal pollution index (MPI) ranged from 0.
View Article and Find Full Text PDFJ Health Popul Nutr
January 2025
Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
Background: The human gut microbiota has a critical role in several aspects of host homeostasis, such as immune development, metabolism, nutrition, and defense against pathogens during life. It can be sensitive to xenobiotics including drugs, diet, or even environmental pollutants, especially heavy metals (HMs). The findings of some previous studies are heterogeneous due to the inclusion of various types of study (human, and animal studies) and wide exposures (phthalate, bisphenol A, HMS, etc.
View Article and Find Full Text PDFCurr Environ Health Rep
January 2025
School of Health Sciences, Purdue University, West-Lafayette, IN, 47906, USA.
Purpose Of Review: This review explores the use of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and X-ray Fluorescence (XRF) for quantifying metals and metalloids in biological matrices such as hair, nails, blood, bone, and tissue. It provides a comprehensive overview of these methodologies, detailing their technological limitations, application scopes, and practical considerations for selection in both laboratory and field settings. By examining traditional and novel aspects of each method, this review aims to guide researchers and clinical practitioners in choosing the most suitable analytical tool based on their specific needs for sensitivity, precision, speed, and sample preparation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!