High-Resolution Transfer Printing of Graphene Lines for Fully Printed, Flexible Electronics.

ACS Nano

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States.

Published: July 2017

Pristine graphene inks show great promise for flexible printed electronics due to their high electrical conductivity and robust mechanical, chemical, and environmental stability. While traditional liquid-phase printing methods can produce graphene patterns with a resolution of ∼30 μm, more precise techniques are required for improved device performance and integration density. A high-resolution transfer printing method is developed here capable of printing conductive graphene patterns on plastic with line width and spacing as small as 3.2 and 1 μm, respectively. The core of this method lies in the design of a graphene ink and its integration with a thermally robust mold that enables annealing at up to ∼250 °C for precise, high-performance graphene patterns. These patterns exhibit excellent electrical and mechanical properties, enabling favorable operation as electrodes in fully printed electrolyte-gated transistors and inverters with stable performance even following cyclic bending to a strain of 1%. The high resolution coupled with excellent control over the line edge roughness to below 25 nm enables aggressive scaling of transistor dimensions, offering a compelling route for the scalable manufacturing of flexible nanoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.7b03795DOI Listing

Publication Analysis

Top Keywords

graphene patterns
12
high-resolution transfer
8
transfer printing
8
fully printed
8
graphene
6
printing
4
printing graphene
4
graphene lines
4
lines fully
4
printed flexible
4

Similar Publications

Moyamoya is a non-atherosclerotic intracranial steno-occlusive condition that places patients at high risk for ischaemic stroke. Randomized trials of surgical revascularization demonstrating efficacy in ischaemic moyamoya have not been performed, and as such, biomarkers of parenchymal haemodynamic impairment are needed to assist with triage and evaluate post-surgical response. In this prospective study, we test the hypothesis that parenchymal cerebrovascular reactivity (CVR) metrics in response to a fixed-inspired 5% carbon dioxide challenge correlate with recent focal ischaemic symptoms.

View Article and Find Full Text PDF

Programmable organization of uniform organic/inorganic functional building blocks into large-scale ordered superlattices has attracted considerable attention since the bottom-up self-organization strategy opens up a robust and universal route for designing novel and multifunctional materials with advanced applications in memory storage devices, catalysis, photonic crystals, and biotherapy. Despite making great efforts in the construction of superlattice materials, there still remains a challenge in the preparation of organic/inorganic hybrid superlattices with tunable dimensions and exotic configurations. Here, we report the spontaneous self-organization of polystyrene-tethered gold nanoparticles (AuNPs@PS) into freestanding organic/inorganic hybrid superlattices templated at the diethylene glycol-air interface.

View Article and Find Full Text PDF

A series of anionic poly(acrylamide--sodium acrylate)/poly(ethylene glycol), PAN/PEG, hybrids were conveniently synthesized free radical aqueous polymerization by integrating bentonite, kaolin, mica, graphene and silica, following a simple and eco-friendly crosslinking methodology. A comparative perspective was presented on how integrated nanofillers affect the physicochemical properties of hybrid gels depending on the differences in their structures. Among the five types of nanofillers, bentonite-integrated hybrid gel had the highest water absorbency, while graphene-integrated gel had the lowest.

View Article and Find Full Text PDF

Time-Course Transcriptomics Analysis Reveals Molecular Mechanisms of Salt-Tolerant and Salt-Sensitive Cotton Cultivars in Response to Salt Stress.

Int J Mol Sci

January 2025

Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China.

Salt stress is an environmental factor that limits plant seed germination, growth, and survival. We performed a comparative RNA sequencing transcriptome analysis during germination of the seeds from two cultivars with contrasting salt tolerance responses. A transcriptomic comparison between salt-tolerant cotton cv Jin-mian 25 and salt-sensitive cotton cv Su-mian 3 revealed both similar and differential expression patterns between the two genotypes during salt stress.

View Article and Find Full Text PDF

A novel organic-inorganic eutectic phase change material (PCM) based on sodium acetate trihydrate (SAT) and polyethylene glycol (PEG) was developed to meet the needs of heat recovery and building heating. Three kinds of PEG with different molecular weights were selected to form organic-inorganic eutectic PCM with SAT. The thermal properties of three series of SAT-PEG eutectic PCM were compared based on DSC results, focusing on the impact of PEG addition on the phase change temperature and enthalpy of SAT, as well as the melting uniformity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!