Staphylococcus epidermidis is a significant nosocomial pathogen in predisposed hosts because of its capability of forming a biofilm on indwelling medical devices. The initial stage of biofilm formation has a key role in S. epidermidis abiotic surface colonization. Recently, many strategies have been developed to create new anti-biofilm surfaces able to control bacterial adhesion mechanisms. In this work, the self-assembled amphiphilic layers formed by two fungal hydrophobins (Vmh2 and Pac3) have proven to be able to reduce the biofilm formed by different strains of S. epidermidis on polystyrene surfaces. The reduction in the biofilm thickness on the coated surfaces and the preservation of cell vitality have been demonstrated through confocal laser scanning microscope analysis. Moreover, the anti-biofilm efficiency of the self-assembled layers on different medically relevant materials has also been demonstrated using a CDC biofilm reactor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08927014.2017.1338690 | DOI Listing |
Arch Microbiol
January 2025
Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
Bacteriophages produce endolysins at the end of the lytic cycle, which are crucial for lysing the host cells and releasing virion progeny. This lytic feature allows endolysins to act as effective antimicrobial alternatives when applied exogenously. Staphylococcal endolysins typically possess a modular structure with one or two enzymatically active N-terminal domains (EADs) and a C-terminal cell wall binding domain (CBD).
View Article and Find Full Text PDFHeliyon
January 2025
Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
Background: Oritavancin (ORT) is a new single-dose lipoglycopeptide showing activity against staphylococci and vancomycin-resistant enterococci. However, there is no data regarding its potential use as a catheter lock solution are scarce. We constructed an model to analyze the efficacy and stability of an ORT lock solution against the biofilm of staphylococci and enterococci over 7 days at 37 °C.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
Staphylococcaceae are a diverse bacterial family with important implications for human and animal health. This study highlights the One Health relevance of their environmental dispersal, particularly, by identifying closely related or genetically identical strains circulating between farm and community environments. Environmental Staphylococcaceae strains were isolated from animal farms and interconnected areas within a university setting, both influenced by anthropogenic activities.
View Article and Find Full Text PDFEye Contact Lens
January 2025
Medical College of Wisconsin, Milwaukee, WI.
Purpose: To describe a rare case of infectious keratitis secondary to Brevundimonas diminuta, a gram-negative bacillus with fluoroquinolone resistance and rare clinical isolation.
Methods: A 50-year-old man with contact lens overuse presented with a large corneal ulcer and hand motion visual acuity. Initial treatment with fortified topical tobramycin and vancomycin yielded slow improvement, and initial culture grew Staphylococcus epidermidis, Staphylococcus hominis, and Corynebacterium bovis.
Infect Control Hosp Epidemiol
January 2025
Division of Infectious Diseases, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
Whole genome sequencing (WGS) and clinical review were used to characterize 14 cases of central line-associated bloodstream infection (CLABSI) due to . WGS, which demonstrated disparate strains, suggested that 42.9% of CLABSI cases were due to contamination, while clinical review suggested that 57.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!