Cobalt(II)-Catalyzed Isocyanide Insertion Reaction with Sulfonyl Azides in Alcohols: Synthesis of Sulfonyl Isoureas.

J Org Chem

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.

Published: August 2017

A Co(II)-catalyzed isocyanide insertion reaction with sulfonyl azides in alcohols to form sulfonyl isoureas via nitrene intermediate has been developed. This protocol provides a new, environmentally friendly, and simple strategy for the synthesis of sulfonyl isourea derivatives by employing a range of substrates under mild conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.7b01127DOI Listing

Publication Analysis

Top Keywords

isocyanide insertion
8
insertion reaction
8
reaction sulfonyl
8
sulfonyl azides
8
azides alcohols
8
synthesis sulfonyl
8
sulfonyl isoureas
8
sulfonyl
5
cobaltii-catalyzed isocyanide
4
alcohols synthesis
4

Similar Publications

Addition and Oxidation Reactivity of a Pentacoordinate Nickelacyclobutane.

Chemistry

December 2024

Organic Chemistry and Catalysis, Faculty of Science, Utrecht University, Institute for Sustainable and Circular Chemistry, Universitetisweg 99, 3584 CG, Utrecht, The, Netherlands.

Nickelacyclobutanes are reactive intermediates in catalytic cycles including cyclopropanation and insertion reactions. The stoichiometric study of these intermediates has shown that their reactivity is highly influenced by the coordination environment of the nickel center. A pentacoordinated nickelacyclobutane embedded in a diphosphine pincer ligand has been shown to selectively undergo various reactions with exogenous ligands, including [2+2] cycloreversion and carbene transfer to an isocyanide.

View Article and Find Full Text PDF

Isocyanide Substituent Influences Reductive Elimination versus Migratory Insertion in Reaction with an [Fe(μ-H)] Complex.

Inorg Chem

November 2024

Center for Catalysis and Florida Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.

Iron hydrides are proposed reactive intermediates for N and CO conversion in industrial and biological processes. Here, we report a reactivity study of a low-coordinate di(μ-hydrido)diiron(II) complex, Fe(μ-H), where is a bis(β-diketiminate) cyclophane, with isocyanides, which have electronic structures related to N and CO. The reaction outcome is influenced by the isocyanide substituent, with 2,6-xylyl isocyanide leading to H loss, to form a bis(μ-1,1-isocyanide)diiron(I) complex, whereas all of the other tested isocyanides insert into the Fe-H bond to give (μ-1,2-iminoformyl) complexes.

View Article and Find Full Text PDF

Carbene transfer reactivity from a nickelacyclobutane.

Chem Commun (Camb)

October 2024

Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.

A formal carbene-transfer reaction from an isolated nickelacyclobutane to an isocyanide to form a ketenimine is reported. DFT calculations support a stepwise 1,1-insertion/fragmentation pathway without a carbene intermediate. This unusual reactivity suggests a potential new role as "carbene reservoir" for nickelacyclobutanes, which are typically seen as intermediates in catalytic cyclopropanation.

View Article and Find Full Text PDF

Disilicon-Mediated Carbon Monoxide Activation: From a 1,2,3-Trisila- to 1,3-Disilacyclopentadienes with Hypercoordinate λSi-λC Double Bonds.

Angew Chem Int Ed Engl

January 2025

Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany.

The facile reaction of the SiPh-bridged bis-silylene (LSi:)SiPh (L=PhC(NBu)) with diphenylacetylene affords the unprecedented 1,2,3-trisilacyclopentadiene (LSi)(PhC)SiPh 1 with a hypercoordinate λSi-λSi double bond. Compound 1 is very oxophilic and consumes three molar equivalents of inert NO to form the bicyclic oxygenation product 2 through O-atom insertion in the Si=Si and Si-Si bonds. Strikingly, 1 can completely split the C≡O bonds of carbon monoxide under ambient conditions (1 atm, room temperature), yielding the 1,3-disilacyclopentadiene 3, representing the first hypercoordinate example of a cyclosilene with a λSi-λC double bond.

View Article and Find Full Text PDF

Synthesis and Reactivity of Dipalladated Derivatives of Terephthalaldehyde.

Organometallics

August 2024

Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Murcia E-30071, Spain.

The polynuclear complex [{μ-1,4,,″-CH{C(H)=N(Bu)}-2,5}{Pd(μ-OAc)}] () reacts with tbbpy (4,4'-di--butyl-2,2'-bipyridine) and TlOTf to form the dinuclear complex [{μ-1,4,,″-CH{C(H)=N(Bu)}-2,5}{Pd(tbbpy)}] (). The hydrolysis of with acetic acid in a 5:1 acetone/water mixture, in the presence of two equivalents of tbbpy and excess NaX (X = Br, I), yields the dipalladated terephthalaldehyde complexes [CH{PdX(tbbpy)}-1,4-(CHO)-2,5] [X = Br (), X = I ()], which are the first fully characterized complexes of this type. The reaction of with CO results in the insertion of CO into both aryl-Pd bonds, forming [CH{C(O){PdX(tbbpy)}}-1,4-(CHO)-2,5] [X = Br (), X = I ()], which are the first examples of complexes with CO inserted into two separate aryl-metal bonds involving the same ligand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!