Hydrogen sulfide (HS) is a signaling molecule that is toxic at elevated concentrations. In eukaryotes, it is cleared via a mitochondrial sulfide oxidation pathway, which comprises sulfide quinone oxidoreductase, persulfide dioxygenase (PDO), rhodanese, and sulfite oxidase and converts HS to thiosulfate and sulfate. Natural fusions between the non-heme iron containing PDO and rhodanese, a thiol sulfurtransferase, exist in some bacteria. However, little is known about the role of the PDO-rhodanese fusion (PRF) proteins in sulfur metabolism. Herein, we report the kinetic properties and the crystal structure of a PRF from the Gram-negative endophytic bacterium The crystal structures of wild-type PRF and a sulfurtransferase-inactivated C314S mutant with and without glutathione were determined at 1.8, 2.4, and 2.7 Å resolution, respectively. We found that the two active sites are distant and do not show evidence of direct communication. The PRF exhibited robust PDO activity and preferentially catalyzed sulfur transfer in the direction of thiosulfate to sulfite and glutathione persulfide; sulfur transfer in the reverse direction was detectable only under limited turnover conditions. Together with the kinetic data, our bioinformatics analysis reveals that PRF is poised to metabolize thiosulfate to sulfite in a sulfur assimilation pathway rather than in sulfide stress response as seen, for example, with the PRF or sulfide oxidation and disposal as observed with the homologous mammalian proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572905PMC
http://dx.doi.org/10.1074/jbc.M117.790170DOI Listing

Publication Analysis

Top Keywords

sulfur assimilation
8
sulfide oxidation
8
pdo rhodanese
8
sulfur transfer
8
thiosulfate sulfite
8
prf
6
sulfur
5
sulfide
5
structural biochemical
4
biochemical analyses
4

Similar Publications

Recent advances in the nitrogen cycle involving actinomycetes: Current situation, prospect and challenge.

Bioresour Technol

January 2025

Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Educatio, Guizhou University, Guiyang 550025 Guizhou Province, China.

Actinomycetes are essential for sustaining the ecosystem's nitrogen balance and stimulating plant development. In contrast, existing detection and culture techniques for actinomycetes are still limited, making it difficult to fully assess their role in the nitrogen cycle. This review emphasized the advantages of actinomycetes in ecological restoration, outlined the current status and challenges of research on nitrogen cycling by actinomycetes.

View Article and Find Full Text PDF

Strain LCG007, isolated from Lu Chao Harbor's intertidal water, phylogenetically represents a novel genus within the family Rhodobacteraceae. Metabolically, it possesses a wide array of amino acid metabolic genes that enable it to thrive on both amino acids or peptides. Also, it could hydrolyze peptides containing D-amino acids, highlighting its potential role in the cycling of refractory organic matter.

View Article and Find Full Text PDF

Glyphosate (Gly) is a widely used herbicide for weed control in agriculture, but it can also adversely affect crops by impairing growth, reducing yield, and disrupting nutrient uptake, while inducing toxicity. Therefore, adopting integrated eco-friendly approaches and understanding the mechanisms of glyphosate tolerance in plants is crucial, as these areas remain underexplored. This study provides proteome insights into Si-mediated improvement of Gly-toxicity tolerance in Brassica napus.

View Article and Find Full Text PDF

Characterization of fungal carbonyl sulfide hydrolase belonging to clade D β-carbonic anhydrase.

FEBS Lett

January 2025

Department of Symbiotic Science of Environment and Natural Resources, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan.

Carbonyl sulfide hydrolase (COSase) is a unique enzyme that exhibits high activity towards carbonyl sulfide (COS) but low carbonic anhydrase (CA) activity, despite belonging to the CA family. COSase was initially identified in a sulfur-oxidizing bacterium and later discovered in the ascomycete Trichoderma harzianum strain THIF08. The COSase from T.

View Article and Find Full Text PDF

Photoheterotrophic extracellular reduction of ferrihydrite activates diverse intracellular metabolic pathways in Rhodopseudomonas palustris for enhanced antibiotic degradation.

Water Res

January 2025

Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China. Electronic address:

Anoxygenic photosynthetic bacteria (APB) have been frequently detected as a photoautotrophic Fe-carbon cycling drivers in photic and anoxic environment. However, the potential capacity of these bacteria for photoheterotrophic extracellular reduction of iron-containing minerals and their impact on the transformation of organic pollutants remain currently unknown. This study investigated the capacity of R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!