Background: Surgical-site infections due to intraoperative contamination are chiefly ascribable to airborne particles carrying microorganisms. The purpose of this study is to identify the actions that increase the number of airborne particles in the operating room.

Methods: Two surgeons and two surgical nurses performed three patterns of physical movements to mimic intraoperative actions, such as preparing the instrument table, gowning and donning/doffing gloves, and preparing for total knee arthroplasty. The generation and behavior of airborne particles were filmed using a fine particle visualization system, and the number of airborne particles in 2.83 m of air was counted using a laser particle counter. Each action was repeated five times, and the particle measurements were evaluated through one-way analysis of variance multiple comparison tests followed by Tukey-Kramer and Bonferroni-Dunn multiple comparison tests for post hoc analysis. Statistical significance was defined as a P value ≤ .01.

Results: A large number of airborne particles were observed while unfolding the surgical gown, removing gloves, and putting the arms through the sleeves of the gown. Although numerous airborne particles were observed while applying the stockinet and putting on large drapes for preparation of total knee arthroplasty, fewer particles (0.3-2.0 μm in size) were detected at the level of the operating table under laminar airflow compared to actions performed in a non-ventilated preoperative room (P < .01).

Conclusions: The results of this study suggest that surgical staff should avoid unnecessary actions that produce a large number of airborne particles near a sterile area and that laminar airflow has the potential to reduce the incidence of bacterial contamination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500993PMC
http://dx.doi.org/10.1186/s12893-017-0275-1DOI Listing

Publication Analysis

Top Keywords

airborne particles
24
number airborne
12
total knee
8
knee arthroplasty
8
multiple comparison
8
comparison tests
8
particles observed
8
airborne
7
particles
7
factors contributing
4

Similar Publications

Phlorofucofuroeckol-A: A Natural Compound with Potential to Attenuate Inflammatory Diseases Caused by Airborne Fine Dust.

Medicina (Kaunas)

January 2025

Laboratory for Infection Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea.

: Persistent exposure to airborne fine dust (FD) particles contributing to air pollution has been linked to various human health issues, including respiratory inflammation, allergies, and skin diseases. We aimed to identify potential seaweed anti-inflammatory bioactive reagents and determine their effects on systemic inflammatory responses induced by FD particles. : While exploring anti-inflammatory bioactive reagents, we purified compounds with potential anti-inflammatory effects from the seaweed extracts of , , and .

View Article and Find Full Text PDF

Purpose: Ultra-high translucency zirconia (UT-Zr) is known for its high esthetic quality; however, its inert surface results in low hydrophilicity and surface energy (SE). To address this limitation, this study proposes an innovative zirconia heat treatment process (ZHTP) and aims to evaluate the effects of ZHTP on the surface characteristics of UT-Zr, offering a novel and practical approach for surface pretreatment in dental practice.

Material And Methods: The plate-shaped UT-Zr samples were fabricated.

View Article and Find Full Text PDF

Ultraviolet radiation vs air filtration to mitigate virus laden aerosol in an occupied clinical room.

J Hazard Mater

January 2025

Monash Lung, Sleep, Allergy and Immunology, Monash Health, Melbourne, VIC, Australia; School of Clinical Sciences, Monash University, Melbourne, VIC, Australia; Monash Partners - Epworth, Melbourne, VIC, Australia.

Mitigation measures against infectious aerosols are desperately needed. We aimed to: 1) compare germicidal ultraviolet radiation (GUV) at 254 nm (254-GUV) and 222 nm (222-GUV) with portable high efficiency particulate air (HEPA) filters to inactivate/remove airborne bacteriophage ϕX174, 2) measure the effect of air mixing on the effectiveness of 254-GUV, and 3) determine the relative susceptibility of ϕX174, SARS-CoV-2, and Influenza A(H3N2) to GUV (254 nm, 222 nm). A nebulizer generated ϕX174 laden aerosols in an occupied clinical room (sealed-low flow).

View Article and Find Full Text PDF

Assessing microplastic and nanoplastic contamination in bird lungs: evidence of ecological risks and bioindicator potential.

J Hazard Mater

January 2025

Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China. Electronic address:

Microplastics (MPs, 1 µm-5 mm) and nanoplastics (NPs, < 1 µm), collectively termed micro(nano)plastics (MNPs), are pervasive airborne pollutants with significant ecological risks. Birds, recognized as bioindicators, are particularly vulnerable to MNP exposure, yet the extent and risks of MNP pollution in bird lungs remain largely unexplored. This study assessed MP exposure in bird lungs of 51 species and NP exposure in the lungs of five representative species using laser direct infrared (LDIR) and pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) techniques, respectively.

View Article and Find Full Text PDF

The PSO-IFAH optimization algorithm for transient electromagnetic inversion.

PLoS One

January 2025

Department of Electrical and Computer Engineering, The University of Tulsa, Tulsa, OK, United States of America.

As a non-contact method, the transient electromagnetic (TEM) method has the characteristics of high efficiency, small impact of device, no limitation of site range, and high resolution, and is a hot topic in current research. However, the research on the refined data processing method of TEM is lag, which seriously restricts the application in superficial engineering investigation and is a key problem that needs to be solved urgently. The particle swarm optimization (PSO) algorithm and firefly algorithm (FA) were successful swarm intelligence algorithms inspired by nature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!