Graphene composite films inspired by nacre are the subject of ongoing research efforts to optimize their properties for applications in flexible energy devices. Noncovalent interactions do not cause interruption of the delocalized conjugated π-electron system, thus preserving graphene's excellent properties. Herein, we synthesized a conjugated molecule with pyrene groups on both ends of a long linear chain (AP-DSS) from 1-aminopyrene (AP) and disuccinimidyl suberate (DSS). The AP-DSS molecules are used to cross-link adjacent graphene nanosheets via π-π interfacial interactions to improve properties of graphene films. The tensile strength and toughness of resultant graphene films were 4.1 and 6.4 times higher, respectively, than that of pure rGO film. More remarkably, the electrical conductivity showed a simultaneous improvement, which is rare to be achieved in other kinds of covalent or noncovalent functionalization. Such integration demonstrates the advantage of this work to previously reported noncovalent functionalization of graphene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b07748 | DOI Listing |
NPJ 2D Mater Appl
January 2025
School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin, Ireland.
Thin films fabricated from solution-processed graphene nanosheets are of considerable technological interest for a wide variety of applications, such as transparent conductors, supercapacitors, and memristors. However, very thin printed films tend to have low conductivity compared to thicker ones. In this work, we demonstrate a simple layer-by-layer deposition method which yields thin films of highly-aligned, electrochemically-exfoliated graphene which have low roughness and nanometer-scale thickness control.
View Article and Find Full Text PDFJ Food Sci
January 2025
Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China.
Compared to traditional preservatives, photodynamic inactivation (PDI) offers a promising bactericidal approach due to its nontoxic nature and low propensity for microbial resistance. In this paper, we initially investigate the principles and antibacterial mechanisms underlying PDI. We then review factors influencing PDI's germicidal efficacy in food preservation.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Physics, Changwon National University, Changwon 51140, Republic of Korea.
A mechanically robust flexible transparent conductor with high thermal and chemical stability was fabricated from welded silver nanowire networks (w-Ag-NWs) sandwiched between multilayer graphene (MLG) and polyimide (PI) films. By modifying the gas flow dynamics and surface chemistry of the Cu surface during graphene growth, a highly crystalline and uniform MLG film was obtained on the Cu foil, which was then directly coated on the Ag-NW networks to serve as a barrier material. It was found that the highly crystalline layers in the MLG film compensate for structural defects, thus forming a perfect barrier film to shield Ag NWs from oxidation and sulfurization.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
The highly selective and sensitive determination of pesticide residues in food is critical for human health protection. Herein, the specific selectivity of molecularly imprinted polymers (MIPs) was proposed to construct an electrochemical sensor for the detection of carbendazim (CBD), one of the famous broad-spectrum fungicides, by combining with the synergistic effect of bioelectrocatalysis and nanocomposites. Gold nanoparticle-reduced graphene oxide (AuNP-rGO) composites were electrodeposited on a polished glassy carbon electrode (GCE).
View Article and Find Full Text PDFMolecules
December 2024
College of Mechanical and Electronic Engineering, Tarim University, Alar 843300, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!