Alteration and Erosion of Rock Matrix Bordering a Carbonate-Rich Shale Fracture.

Environ Sci Technol

Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Published: August 2017

A novel reactive transport model has been developed to examine the processes that affect fracture evolution in a carbonate-rich shale. An in situ synchrotron X-ray microtomography experiment, flowing CO saturated water through a single fracture mini-core of Niobrara Shale provided the experimental observations for the development and testing of the model. The phenomena observed included the development of a porous altered layer, flow channeling, and increasingly limited calcite dissolution. The experimental observations cannot be explained by models that consider only mineral dissolution and development of an altered layer. The difference between the fracture volume change recorded by the microtomography images and what would be expected from mineral dissolution alone suggest that there is erosion of the altered layer as it develops. The numerical model includes this additional mechanism, with the erosion rate based on the thickness of the altered layer, and successfully captures the evolution of the geochemical reactions and morphology of the fracture. The findings imply that the abundance (with a threshold of approximately 35%) and reactivity of the rapidly reacting mineral control the development and erodibility of the altered layer on the fracture surfaces, and therefore fracture opening.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.7b02063DOI Listing

Publication Analysis

Top Keywords

altered layer
20
carbonate-rich shale
8
experimental observations
8
mineral dissolution
8
fracture
7
altered
5
layer
5
alteration erosion
4
erosion rock
4
rock matrix
4

Similar Publications

Genetic variation in the α5 nicotinic acetylcholine receptor (nAChR) subunit of mice results in behavioral deficits linked to the prefrontal cortex (PFC). rs16969968 is the primary Single Nucleotide Polymorphism (SNP) in CHRNA5 strongly associated with nicotine dependence and schizophrenia in humans. We performed single cell-electrophysiology combined with morphological reconstructions on layer 6 (L6) excitatory neurons in the medial PFC (mPFC) of wild type (WT) rats, rats carrying the human coding polymorphism rs16969968 in Chrna5 and α5 knockout (KO) rats.

View Article and Find Full Text PDF

The impact of various neurodegenerative diseases on the retina has been investigated in recent years using optical coherence tomography (OCT). Epilepsy, classified as a neurodegenerative disorder, has been indicated to affect the structural integrity of the retina. Moreover, there is ongoing debate regarding the relative contribution of disease pathogenesis and the consumption of anti-epileptic drugs (AEDs) to these retinal changes.

View Article and Find Full Text PDF

Effects of acute PM purification on cognitive function and underlying mechanisms: Evidence from integrating alternative splicing into multi-omics.

J Hazard Mater

January 2025

Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Institute for Healthy China, Tsinghua University, Beijing 100084, China. Electronic address:

The relationship between fine particulate matter (PM) and cognition has been extensively investigated. However, the causal impact of acute PM purification on cognition improvement and the underlying biological mechanisms remain relatively opaque. Our double-blinded randomized controlled trial assessed the impact of acute PM purification on executive function, underpinned by multi-omics approaches including alternative splicing (AS) analysis.

View Article and Find Full Text PDF

Synergistic spatial separation effect of internal electric field in ALD-generated BiFeO/CuO@Co Z-type heterojunction for enhanced photocatalytic water oxidation.

J Colloid Interface Sci

January 2025

College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China; Guangdong Flexible Wearable Energy and Tools Engineering Technology Research Centre, Shenzhen University, Shenzhen 518060, PR China. Electronic address:

Altering the electron distribution within a catalyst to manipulate internal charge migration pathways is an effective strategy for achieving high efficiency in carrier separation and migration, which is essential for the advancement of photocatalytic water oxidation technologies. We have employed atomic layer deposition (ALD) to construct a BiFeO/CuO (BFO/CuO) heterojunction with a specific CuO thickness, resulting in a Z-type junction (BFO/CuO50) characterized by a robust internal electric field. This junction facilitates the spatial separation of charge carriers, thereby enhancing their migration efficiency.

View Article and Find Full Text PDF

HER2-positive (+) breast cancer is an aggressive disease with poor prognosis, a narrative that changed drastically with the advent and approval of trastuzumab, the first humanized monoclonal antibody targeting HER2. In addition to another monoclonal antibody, more classes of HER2-targeted agents, including tyrosine kinase inhibitors, and antibody-drug conjugates were developed in the years that followed. While these potent therapies have substantially improved the outcome of patients with HER2+ breast cancer, resistance has prevailed as a clinical challenge ever since the arrival of targeted agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!