The impact of the amino-acid side-chain length on peptide-RNA binding events has been investigated using HIV-1 Tat derived peptides as ligands and the HIV-1 TAR RNA element as an RNA model. Our studies demonstrate that increasing the length of all peptide side-chains improves unexpectedly the binding affinity (K) but reduces the degree of compactness of the peptide-RNA complex. Overall, the side-chain length appears to modulate in an unpredictable way the ability of the peptide to compete with the cognate TAR RNA partner. Beyond the establishment of non-intuitive fundamental relationships, our results open up new perspectives in the design of effective RNA ligand competitors, since a large number of them have already been identified but few studies report on the modulation of the biological activity by modifying in the same way the length of all chains connecting RNA recognition motives to the central scaffold of a ligand.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp03726kDOI Listing

Publication Analysis

Top Keywords

side-chain length
12
binding events
8
tar rna
8
length
5
rna
5
exploring impact
4
impact side-chain
4
length peptide/rna
4
peptide/rna binding
4
events impact
4

Similar Publications

Enveloped viruses, such as flaviviruses and coronaviruses, are pathogens of significant medical concern that cause severe infections in humans. Some photosensitizers are known to possess virucidal activity against enveloped viruses, targeting their lipid bilayer. Here we report a series of halogenated difluoroboron-dipyrromethene (BODIPYs) photosensitizers with strong virus-inactivating activity.

View Article and Find Full Text PDF

Facile Synthesis of Thermoresponsive Alternating Copolymers with Tunable Phase-Transition Temperatures.

Polymers (Basel)

December 2024

Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.

A series of novel amphiphilic alternating CPEG copolymers were synthesized through an amine-epoxy click reaction comprising aliphatic amine and polyethylene glycol diglycidyl ether (PEGDE). These polymers were characterized in detail via nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) to confirm the successful synthesis. Due to their amphiphilic structure, these polymers display thermoresponsiveness, with tunable cloud points (Tcps) that are adjustable from 20.

View Article and Find Full Text PDF

Fine-tuning probes for fluorescence polarization binding assays of bivalent ligands against polo-like kinase 1 using full-length protein.

Bioorg Med Chem

December 2024

Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 1050 Boyles St., Frederick, MD 21702, USA.

Polo-like kinase 1 (Plk1) is an important cell cycle regulator that is a recognized target for development of anti-cancer therapeutics. Plk1 is composed of a catalytic kinase domain (KD), a flexible interdomain linker and a polo-box domain (PBD). Intramolecular protein-protein interactions (PPIs) between the PBD and KD result in "auto-inhibition" that is an essential component of proper Plk1 function.

View Article and Find Full Text PDF
Article Synopsis
  • The rise of multidrug-resistant bacteria highlights the urgent need for new antimicrobial medicines, leading to the investigation of antimicrobial peptoids as potential alternatives.
  • Thirteen peptoid analogues were synthesized with varying alkyl side chains to analyze their antibacterial properties, and only one, called Tosyl-Octyl-Peptoid (TOP), showed significant broad-spectrum bactericidal activity.
  • TOP effectively kills bacteria in both dividing and non-dividing states, demonstrating promising minimum inhibitory concentrations and a high selectivity ratio, suggesting its potential as a future therapeutic option against resistant infections.
View Article and Find Full Text PDF

Artificial water channels (AWCs) have emerged as a promising framework for stable water permeation, with water transport rates comparable to aquaporins (3.4-40.3 × 10 HO/channel/s).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!