Neurofeedback is a method for using neural activity displayed on a computer to regulate one's own brain function and has been shown to be a promising technique for training individuals to interact with brain-machine interface applications such as neuroprosthetic limbs. The goal of this study was to develop a user-friendly functional near-infrared spectroscopy (fNIRS)-based neurofeedback system to upregulate neural activity associated with motor imagery, which is frequently used in neuroprosthetic applications. We hypothesized that fNIRS neurofeedback would enhance activity in motor cortex during a motor imagery task. Twenty-two participants performed active and imaginary right-handed squeezing movements using an elastic ball while wearing a 98-channel fNIRS device. Neurofeedback traces representing localized cortical hemodynamic responses were graphically presented to participants in real time. Participants were instructed to observe this graphical representation and use the information to increase signal amplitude. Neural activity was compared during active and imaginary squeezing with and without neurofeedback. Active squeezing resulted in activity localized to the left premotor and supplementary motor cortex, and activity in the motor cortex was found to be modulated by neurofeedback. Activity in the motor cortex was also shown in the imaginary squeezing condition only in the presence of neurofeedback. These findings demonstrate that real-time fNIRS neurofeedback is a viable platform for brain-machine interface applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5482291 | PMC |
http://dx.doi.org/10.1117/1.NPh.4.2.021107 | DOI Listing |
Exp Physiol
January 2025
Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Australia.
Blood flow restriction (BFR) combined with low work rate exercise can enhance muscular and cardiovascular fitness. However, whether neural mechanisms mediate these enhancements remains unknown. This study examined changes in corticospinal excitability and motor cortical inhibition following arm cycle ergometry with and without BFR.
View Article and Find Full Text PDFEur J Pain
February 2025
Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil.
Background And Objective: Non-invasive neuromodulation techniques (NIN), such as transcranial Direct Current Stimulation (tDCS) and repetitive Transcranial Magnetic Stimulation (rTMS), have been extensively researched for their potential to alleviate pain by reversing neuroplastic changes associated with neuropathic pain (NP), a prevalent and complex condition. However, treating NP remains challenging due to the numerous variables involved, such as different techniques, dosages and aetiologies. It is necessary to provide insights for clinicians and public healthcare managers to support clinical decision-making.
View Article and Find Full Text PDFHum Brain Mapp
February 2025
Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
In contrast to blood-oxygenation level-dependent (BOLD) functional MRI (fMRI), which relies on changes in blood flow and oxygenation levels to infer brain activity, diffusion fMRI (DfMRI) investigates brain dynamics by monitoring alterations in the apparent diffusion coefficient (ADC) of water. These ADC changes may arise from fluctuations in neuronal morphology, providing a distinctive perspective on neural activity. The potential of ADC as an fMRI contrast (ADC-fMRI) lies in its capacity to reveal neural activity independently of neurovascular coupling, thus yielding complementary insights into brain function.
View Article and Find Full Text PDFFront Pharmacol
January 2025
MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.
Introduction: Neuroimaging studies have demonstrated that intranasal oxytocin has extensive effects on the resting state functional connectivity of social and emotional processing networks and may have therapeutic potential. However, the extent to which intranasal oxytocin modulates functional connectivity network topology remains less explored, with inconsistent findings in the existing literature. To address this gap, we conducted an exploratory data-driven study.
View Article and Find Full Text PDFClin Neurophysiol Pract
December 2024
Department of Rehabilitation Medicine, Shanghai Jing'an District Central Hospital, Shanghai, China.
Objective: To elucidate the immediate electrophysiological effects of mirror visual feedback (MVF) combined with or without touch task in subacute stroke.
Methods: Subacute stroke patients and healthy controls were recruited to participate in four grasping tasks (MVF or no MVF, combined with rubber ball or no ball) under electroencephalogram (EEG) monitoring. Event-related desynchronization (ERD) /event-related synchronization (ERS) and the lateralization index (LI) were utilized to observe the electrophysiological effects.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!