The tumor microenvironment has been identified as a major mediator of immunological processes in solid tumors. In particular, tumor-associated fibroblasts are known to interact with tumor infiltrating immune cells. We describe the influence of fibroblasts and tumor-microenvironment-derived cytokines on the infiltration capacity of CD3CD8 cytotoxic T lymphocyte subpopulations using a multicellular 3D co-culture system. 3D tumor microtissues were cultivated using a hanging drop system. Human A549 and Calu-6 cancer cell lines were incubated alone or together with the human fibroblast cell line SV80 for 10 d to form microtissues. On day 10, peripheral blood mononuclear cells (PBMC) were added with or without cytokine stimulation for 24 h. Infiltrating PBMC subpopulations were investigated by flow cytometry. Aggregation of the microtissues and the infiltration of the PBMCs were analyzed by immunohistochemistry, and endogenous cytokine and chemokine expression was analyzed with a multi-cytokine immunoassay. Secretion of chemokines is increased in microtissues consisting of cancer cells and fibroblasts. PBMC infiltrate the whole spheroid in cancer cell monocultures, whereas in co-cultures of cancer cells and fibroblasts, PBMCs are rather localized at the margin. Activated CD69 and CD49d T lymphocytes show an increased microtissue infiltration in the presence of fibroblasts. We demonstrate that the stromal component of cancer microtissues significantly influences immune cell infiltration. The presence of fibroblasts in cancer microtissues induces a shift of T lymphocyte infiltration toward activated T lymphocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5486171PMC
http://dx.doi.org/10.1080/2162402X.2017.1323617DOI Listing

Publication Analysis

Top Keywords

tumor-microenvironment-derived cytokines
8
tumor infiltrating
8
lymphocyte subpopulations
8
cancer cell
8
cancer cells
8
cells fibroblasts
8
infiltration presence
8
presence fibroblasts
8
cancer microtissues
8
fibroblasts
6

Similar Publications

Cancer immunology is the most rapidly expanding field in cancer research, with the importance of immunity in cancer pathogenesis now well accepted including in the endocrine-related cancers. The immune system plays an essential role in the development of ductal and luminal epithelial differentiation in the mammary gland. Originally identified as evolutionarily conserved antipathogen cytokines, interferons (IFNs) have shown important immune-modulatory and antineoplastic properties when administered to patients with various types of cancer, including breast cancer.

View Article and Find Full Text PDF

Esophageal cancer (ESCA) is a commonly occurring cancer worldwide with poor survival and limited therapeutic options. Due to the lack of biomarkers that facilitate early detection, its treatment remains a great challenge. This study aims at identifying the tumor microenvironment (TME)-related genes, which might affect prognosis and accelerate clinical treatment for ESCA patients.

View Article and Find Full Text PDF

Tumor Microenvironment-Derived Metabolites: A Guide to Find New Metabolic Therapeutic Targets and Biomarkers.

Cancers (Basel)

June 2021

Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain.

Metabolic reprogramming is a hallmark of cancer that enables cancer cells to grow, proliferate and survive. This metabolic rewiring is intrinsically regulated by mutations in oncogenes and tumor suppressors, but also extrinsically by tumor microenvironment factors (nutrient and oxygen availability, cell-to-cell interactions, cytokines, hormones, etc.).

View Article and Find Full Text PDF

Innate Lymphoid Cells (ILCs) are a recently described heterogeneous population of non-T, non-B lymphocytes. They are highly abundant at mucosal interfaces and, unlike T and B cells, they do not express somatically rearranged antigen-specific receptors. ILCs may be seen as the innate counterparts of T cells, but, major ILC deficiencies in humans appear to be clinically silent in modern conditions of hygiene and medicine, provided that T and B functions are preserved.

View Article and Find Full Text PDF

The NF-κB Activating Pathways in Multiple Myeloma.

Biomedicines

May 2018

Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.

Multiple myeloma(MM), an incurable plasma cell cancer, represents the second most prevalent hematological malignancy. Deregulated activity of the nuclear factor kappaB (NF-κB) family of transcription factors has been implicated in the pathogenesis of multiple myeloma. Tumor microenvironment-derived cytokines and cancer-associated genetic mutations signal through the canonical as well as the non-canonical arms to activate the NF-κB system in myeloma cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!