A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modulation of MHC class I surface expression in B16F10 melanoma cells by methylseleninic acid. | LitMetric

The essential trace element selenium (Se) might play a role in cancer prevention as well as for cancer therapy. Its metabolite methylselenol is able to kill cells through distinct mechanisms including induction of reactive oxygen species, DNA damage and apoptosis. Since methylselenol affects innate immune responses by modulating the expression of NKG2D ligands, the aim of this study was to determine whether the methylselenol generating compound methylseleninic acid (MSA) influences the expression of the MHC class I surface antigens and growth properties thereby reverting immune escape. Treatment of B16F10 melanoma cells expressing low basal MHC class I surface antigens with dimethyldiselenide (DMDSe) and MSA, but not with selenomethionine and selenite resulted in a dose-dependent upregulation of MHC class I cell surface antigens. This was due to a transcriptional upregulation of some major components of the antigen processing machinery (APM) and the interferon (IFN) signaling pathway and accompanied by a reduced migration of B16F10 melanoma cells in the presence of MSA. Comparative "ome"-based profilings of untreated and MSA-treated melanoma cells linked the anti-oxidative response system with MHC class I antigen processing. Since MSA treatment enhanced MHC class I surface expression also on different human tumors cell lines, MSA might affect the malignant phenotype of various tumor cells by restoring MHC class I APM component expression due to an altered redox status and by partially mimicking IFN-gamma signaling thereby providing a novel mechanism for the chemotherapeutic potential of methylselenol generating Se compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5486188PMC
http://dx.doi.org/10.1080/2162402X.2016.1259049DOI Listing

Publication Analysis

Top Keywords

mhc class
28
class surface
16
melanoma cells
16
b16f10 melanoma
12
surface antigens
12
surface expression
8
methylseleninic acid
8
methylselenol generating
8
antigen processing
8
class
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!