The appearance and shape of sesamoid bones within a tendon or ligament wrapping around a joint are understood to be influenced by both genetic and epigenetic factors. Ostriches () possess two sesamoid patellae (kneecaps), one of which (the distal patella) is unique to their lineage, making them a good model for investigating sesamoid tissue development and evolution. Here we used finite-element modelling to test the hypothesis that specific mechanical cues in the ostrich patellar tendon favour the formation of multiple patellae. Using three-dimensional models that allow application of loading conditions in which all muscles, or only distal or only proximal muscles to be activated, we found that there were multiple regions within the tendon where transformation from soft tissue to fibrocartilage was favourable and therefore a potential for multiple patellae based solely upon mechanical stimuli. While more studies are needed to better understand universal mechanobiological principles as well as full developmental processes, our findings suggest that a tissue differentiation algorithm using shear strain and compressive strain as inputs may be a roughly effective predictor of the tissue differentiation required for sesamoid development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493912 | PMC |
http://dx.doi.org/10.1098/rsos.170133 | DOI Listing |
R Soc Open Sci
January 2025
National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), Chennai, India.
Tsunamis are massive waves generated by sudden water displacement on the ocean surface, causing devastation as they sweep across the coastlines, posing a global threat. The aftermath of the 2004 Indian Ocean tsunami led to the establishment of the Indian Tsunami Early Warning System (ITEWS). Predicting real-time tsunami heights and the resulting coastal inundation is crucial in ITEWS to safeguard the coastal communities.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, P. R. China.
Background: The location and size of necrotic lesions are important factors for collapse, The preserved angles (PAs) are divided into anterior preserved angle (APA) and lateral preserved angle (LPA), which could accurately measure the location of necrosis lesion. We used them to evaluate the effect of the location and size of necrotic lesions on collapse by finite element analysis, to offer a framework for evaluating the prognosis of osteonecrosis of the femoral head (ONFH) in clinical settings.
Methods: 3 left hip models were constructed based on CT data.
Med Biol Eng Comput
January 2025
Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
Lower limb biomechanics of chronic ankle instability (CAI) individuals has been widely investigated, but few have evaluated the internal foot mechanics in CAI. This study evaluated bone and soft tissue stress in CAI contrasted with copers and non-injured participants during a cutting task. Integrating scanned 3D foot shapes and free-form deformation, sixty-six personalized finite element foot models were developed.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mechanical and Electrical Engineering, Quzhou College of Technology, Quzhou, 324000, China.
Pneumatic impactor is widely used in the drilling process of various medium and high hard rocks with poor drill ability. Currently, there is relatively little analysis on the impact of the inclination of the rock surface during the drilling process on the drilling efficiency and excavation capability of pneumatic impactors. Based on the dynamic theory of impact drilling and finite element method (FEM), the constitutive model of HJC criterion and INVENTOR 3D mechanical structure design software, a 3D numerical analysis system of piston-bit head-rock during pneumatic impactor drilling is established by ANSYS LS-DYNA, a nonlinear dynamic analysis software.
View Article and Find Full Text PDFJ Craniofac Surg
January 2025
Department of Oral and Maxillofacial & Head and Neck Oncology, Capital Medical University School of Stomatology, Beijing, China.
Objective: This study aimed to compare the biomechanics of implant prostheses and peri-implant bone among 6 different mandibular reconstruction models based on patient data involving the use of an upper free-end double-barrel fibula.
Methods: This study was an observational study. Five models were reconstructed using fibular-supported and implant-supported partial dentures.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!