In this study, we have investigated variations in the potential of floating and submerged leaves of longleaf pondweed () to withstand silver ion (Ag)-toxicity. Both floating and submerged leaves changed clear colorless AgNO solutions to colloidal brown in the presence of light. Transmission electron microscopy revealed the presence of distinct crystalline Ag-nanoparticles (Ag-NPs) in these brown solutions. Powder X-ray diffraction pattern showed that Ag-NPs were composed of Ag and AgO. Photosystem (PS) II efficiency of leaves declined upon exposure to Ag with a significantly higher decline in the submerged leaves than in the floating leaves. Similarly, Ag treatment caused a significant reduction in the carboxylase activity of the ribulose bisphosphate carboxylase/oxygenase in leaves. The reduction in this carboxylase activity was significantly higher in the submerged than in the floating leaves. Ag treatment also resulted in a significant decline in the levels of non-enzymatic and enzymatic antioxidants; the decline was significantly lower in the floating than in submerged leaves. X-ray photoelectron spectroscopy revealed the presence of AgO in these leaves. Inductively coupled plasma mass spectrometry analysis revealed a three-fold higher Ag content in the submerged than in floating leaves. Our study demonstrates that floating leaves of longleaf pondweed have a superior potential to counter Ag-toxicity compared with submerged leaves, which could be due to superior potential of floating leaves to reduce Ag to less/non-toxic Ag/AgO-nanoparticles/nanocomplexes. We suggest that modulating the genotype of longleaf pondweed to bear higher proportion of floating leaves would help in cleaning fresh water bodies contaminated with ionic forms of heavy metals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478881PMC
http://dx.doi.org/10.3389/fpls.2017.01052DOI Listing

Publication Analysis

Top Keywords

submerged leaves
24
floating leaves
24
floating submerged
16
longleaf pondweed
16
leaves
15
leaves longleaf
12
floating
10
submerged
8
potential floating
8
revealed presence
8

Similar Publications

Background: Submergence stress is a prevalent abiotic stress affecting plant growth and development and can restrict plant cultivation in areas prone to flooding. Research on plant submergence stress tolerance has been essential in managing plant production under excessive rainfall. Red clover (Trifolium pratense L.

View Article and Find Full Text PDF

First Report of Leaf Spot Caused by on Invasive Weed in Korea.

Plant Dis

December 2024

Korea University, Environmental Science & Ecological Engineering, Seoul, Seoul, Korea (the Republic of), 02841;

Cerastium glomeratum Thuill., known as sticky mouse-ear chickweed, is native to Europe and has become naturalized in the wild on most continents. After its accidental introduction to Korea around the 1980s, it quickly became one of the dominant invasive weeds on the Korean peninsula and is now considered a significant threat to the Korean agroecosystem (Park et al.

View Article and Find Full Text PDF

In silico analysis of trehalose biosynthesis genes provides clues to reveal its roles in Avicennia marina adaptation to tidal submergence.

Plant Physiol Biochem

December 2024

Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361104, PR China. Electronic address:

Trehalose has an important function for alleviating various abiotic stress in plants. Nevertheless, the functional and evolutionary characteristics of trehalose biosynthesis genes in mangrove plants is not documented. Here, using typical mangrove Avicennia marina, we found the trehalose content decreased in the roots and leaves and T6P increased significantly in the leaves under tidal submergence.

View Article and Find Full Text PDF

Mangroves are highly salt-tolerant species, which live in saline intertidal environments, but rely on alternative, less saline water to maintain hydraulic integrity and plant productivity. Foliar water uptake (FWU) is thought to assist in hydration of mangroves, particularly during periods of acute water deficit. We investigated the dynamics of FWU in Avicennia marina and Aegiceras corniculatum by submerging and spraying excised branches and measuring leaf water potential (Ψ) at different time intervals.

View Article and Find Full Text PDF

Beta diversity of macrophyte life forms: Responses to local, spatial, and land use variables in Amazon aquatic environments.

Sci Total Environ

December 2024

Laboratório de Ecologia de Produtores Primários (ECOPRO), Instituto de Ciências Biológicas, Universidade Federal do Pará, R. Augusto Corrêa, 01, 66075-110, Belém, Pará, Brazil.

Aquatic macrophytes encompass a highly diverse group of plants with different strategies, niche requirements, and dispersion capacities. Therefore, macrophyte life forms can respond distinctly to environmental factors. We analyzed whether emergent/amphibious, floating-leaves/rooted submerged, and free-floating/free-submerged macrophytes respond differently to local, spatial, and land use variables in ponds and streams of the Amazon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!