Rice (Oryza sativa L.) is the primary staple food source for more than half of the world's population. In many developing countries, increased use of fertilizers is a response to increase demand for rice. In this study, we investigated the effects of three principal fertilizer components (nitrogen, phosphorus and potassium) on the development of potted rice plants and their effects on fitness traits of the brown planthopper (BPH) [Nilaparvata lugens (Stål) (Homoptera: Delphacidae)], which is a major pest of rice in Bangladesh and elsewhere. Compared to low fertilizer inputs, high fertilizer treatments induced plant growth but also favored BPH development. The BPH had higher survival, developed faster, and the intrinsic rate of natural increase (r ) was higher on well-fertilized than under-fertilized plants. Among the fertilizer inputs, nitrogen had the strongest effect on the fitness traits of BPH. Furthermore, both the "Plant vigor hypothesis" and the "Plant stress hypothesis" were supported by the results, the former hypothesis more so than the latter. These hypotheses suggest that the most suitable/attractive hosts for insect herbivores are the most vigorous plants. Our findings emphasized that an exclusive focus on yield increases through only enhanced crop fertilization may have unforeseen, indirect, effects on crop susceptibility to pests, such as BPH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498570 | PMC |
http://dx.doi.org/10.1038/s41598-017-05023-7 | DOI Listing |
BMC Plant Biol
January 2025
Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA.
Foxtail millet (Setaria italica L.) is nutritionally superior to other cereals of the family Poaceae, with the potential to perform better in marginal environments. In the present context of climate change, ecologically sound and low-input foxtail millet varieties can be chosen for agricultural sustainability.
View Article and Find Full Text PDFPLoS One
January 2025
Commercialization Division, CSIR-Soil Research Institute, Kumasi, Ghana.
Addressing global food security demands urgent improvement in agricultural productivity, particularly in developing economies where market imperfections are perverse and resource constraints prevail. While microcredit is widely acknowledged as a tool for economic empowerment, its role in facilitating agricultural technology adoption and improving agricultural incomes remains underexplored. This study examines the synergistic effects of microcredit access and agricultural technology adoption on the incomes of maize farmers in Kenya.
View Article and Find Full Text PDFJ Am Water Resour Assoc
March 2024
University of Maryland Center for Environmental Science, Annapolis, Maryland, USA.
Many agricultural watersheds rely on the voluntary use of management practices (MPs) to reduce nonpoint source nutrient and sediment loads; however, the water-quality effects of MPs are uncertain. We interpreted water-quality responses from as early as 1985 through 2020 in three agricultural Chesapeake Bay watersheds that were prioritized for MP implementation, namely, the Smith Creek (Virginia), Upper Chester River (Maryland), and Conewago Creek (Pennsylvania) watersheds. We synthesized patterns in MPs, climate, land use, and nutrient inputs to better understand factors affecting nutrient and sediment loads.
View Article and Find Full Text PDFHeliyon
January 2025
Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France.
Anaerobic digestion represents an opportunity for converting organic waste (OW) into valuable products: renewable energy (biogas) and a fertilizer (digestate). However, the long-term effects of digestates on soil biota, especially microorganisms, need to be better documented to understand the impact of digestate on soil ecosystem functioning and resilience. This study assessed the cumulative effect of repeated pig slurry digestate applications on soil microbial communities over a decade, using an in-situ approach to compare digested feedstock with undigested feedstock and other fertilization treatments.
View Article and Find Full Text PDFAmmonia oxidation plays a vital role in regulating soil nitrogen (N) cycle in agricultural soil, which is significantly influenced by different fertilizer regimes. However, there is still need to further investigate the effects of different fertilizer managements on rhizosphere soil ammonia-oxidizing archaea (AOA) and bacteria (AOB) community in the double-cropping rice field. Therefore, the effects of different long-term (37 years) fertilizer managements on rhizosphere soil potential nitrification activity (PNA), AOA and AOB community structure, and its relationship under the double-cropping rice system in southern of China were studied in the present paper.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!