Migration of olfactory ensheathing cells (OECs) is critical for development of olfactory system and essential for neural regeneration after OEC transplantation into nerve injury site. However, the molecular mechanisms underlying the regulation of directional migration of OECs remain unclear. In this study, we found that in migrating OECs, phosphorylated myosin light chain (p-MLC, active myosin II) displayed a polarized distribution, with the leading front exhibiting higher than soma and trailing process. Over-expression of GFP-MLC significantly reduced OEC migration. Moreover, decreasing this front-to-rear difference of myosin II activity by the frontal application of a ML-7 (myosin II inhibitors) gradient induced the collapse of leading front and reversed soma translocation of OECs, whereas, increasing this front-to-rear difference of myosin II activity by the rear application of a ML-7 or BDM gradient or the frontal application of a Caly (myosin II activator) gradient accelerated the soma translocation of OECs. Finally, myosin II as a downstream signaling of repulsive factor Slit-2 mediated the reversal of soma translocation induced by Slit-2. Taken together, these results suggest that the polarized distribution of active myosin II regulates the directional migration of OECs during spontaneous migration or upon to extracellular stimulation such as Slit-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498622 | PMC |
http://dx.doi.org/10.1038/s41598-017-04914-z | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
Planar cell polarity (PCP) is an evolutionarily conserved process for development and morphogenesis in metazoans. The well-organized polarity pattern in cells is established by the asymmetric distribution of two core protein complexes on opposite sides of the cell membrane. The Van Gogh-like (VANGL)-PRICKLE (PK) pair is one of these two key regulators; however, their structural information and detailed functions have been unclear.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University, Xi'an, Shaanxi 710127, China.
The full-dimensional potential energy surface (PES) for the photodissociation of HNCS in the S(″) electronic state has been built up by the neural network method based on more than 48,000 points, which were calculated at the multireference configuration interaction level with Davidson correction using the augmented correlation consistent polarized valence triple-ζ basis set. It was found that two minima, namely, and isomers of HNCS, and seven stationary points exist on the S PES for the three dissociation pathways: HNCS(S) → H + NCS/HNC + S(D)/HN(Δ) + CS(Σ). The dissociation energies of two lowest product channels H + NCS and HNC + S(D) calculated on the PES are in good agreement with experimental results, validating the high accuracy of the PES.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Imperial College London, London, United Kingdom.
Background: Microglial reactivity and neuroinflammation are crucial pathological processes in Alzheimer's Disease (AD). Several attempts to develop a treatment by supressing the immune response in AD have been made, yet these yielded very limited results. Recent studies suggest contrasting effects of microglial reactivity, indicating a biphasic response with both beneficial and deleterious effects at distinct stages of AD.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
Leucine-rich repeat kinase 2 (LRRK2) is a ROCO family member which its mutation is closely related with Parkinson's disease, and LRRK2 is widely involved into the regulation of autophagy, vesicle transport and neuronal proliferation. However, the roles of LRRK2 during mammalian oocyte maturation are still largely unclear. In present study, we disturbed the activity of LRRK2 and showed its essential roles in porcine oocytes.
View Article and Find Full Text PDFSci Rep
January 2025
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
Recently, vortex beams have been widely studied and applied because they carry orbital angular momentum (OAM). It is widely acknowledged in the scientific community that fractional OAM does not typically exhibit stable propagation; notably, the notion of achieving stable propagation with dual-fractional OAM within a single optical vortex has been deemed impracticable. Here, we address the scientific problem through the combined modulation of phase and polarization, resulting in the generation of a dual-fractional OAM vector vortex beam that can stably exist in free space.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!